SUPERSERVER 1027R-72BRFTP **USER'S MANUAL** The information in this User's Manual has been carefully reviewed and is believed to be accurate. The vendor assumes no responsibility for any inaccuracies that may be contained in this document, makes no commitment to update or to keep current the information in this manual, or to notify any person or organization of the updates. Please Note: For the most up-to-date version of this manual, please see our web site at www.supermicro.com. Super Micro Computer, Inc. ("Supermicro") reserves the right to make changes to the product described in this manual at any time and without notice. This product, including software and documentation, is the property of Supermicro and/or its licensors, and is supplied only under a license. Any use or reproduction of this product is not allowed, except as expressly permitted by the terms of said license. IN NO EVENT WILL SUPERMICRO BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, SPECULATIVE OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OR INABILITY TO USE THIS PRODUCT OR DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR, SUPERMICRO SHALL NOT HAVE LIABILITY FOR ANY HARDWARE, SOFTWARE, OR DATA STORED OR USED WITH THE PRODUCT, INCLUDING THE COSTS OF REPAIRING, REPLACING, INTEGRATING, INSTALLING OR RECOVERING SUCH HARDWARE, SOFTWARE, OR DATA. Any disputes arising between manufacturer and customer shall be governed by the laws of Santa Clara County in the State of California, USA. The State of California, County of Santa Clara shall be the exclusive venue for the resolution of any such disputes. Super Micro's total liability for all claims will not exceed the price paid for the hardware product. FCC Statement: This equipment has been tested and found to comply with the limits for a Class A digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the manufacturer's instruction manual, may cause harmful interference with radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case you will be required to correct the interference at your own expense. California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate" WARNING: Handling of lead solder materials used in this product may expose you to lead, a chemical known to the State of California to cause birth defects and other reproductive harm. Manual Revision 1.0a Release Date: October 15, 2013 Unless you request and receive written permission from Super Micro Computer, Inc., you may not copy any part of this document. Information in this document is subject to change without notice. Other products and companies referred to herein are trademarks or registered trademarks of their respective companies or mark holders Copyright © 2013 by Super Micro Computer, Inc. All rights reserved. Printed in the United States of America ## **Preface** ## **About This Manual** This manual is written for professional system integrators and PC technicians. It provides information for the installation and use of the SuperServer 1027R-72BRFTP Installation and maintenance should be performed by experienced technicians only. ## **Manual Organization** ### **Chapter 1: Introduction** The first chapter provides a checklist of the main components included with the server system and describes the main features of the X9DRW-7TPF serverboard and the SC119XTQ-R700WB chassis, which comprise the SuperServer 1027R-72BRFTP ### Chapter 2: Server Installation This chapter describes the steps necessary to install the SuperServer into a rack and check out the server configuration prior to powering up the system. If your server was ordered without processor and memory components, this chapter will refer you to the appropriate sections of the manual for their installation. ## Chapter 3: System Interface Refer here for details on the system interface, which includes the functions and information provided by the control panel on the chassis as well as other LEDs located throughout the system. ## Chapter 4: System Safety You should thoroughly familiarize yourself with this chapter for a general overview of safety precautions that should be followed when installing and servicing the SuperServer 1027R-72BRFTP ## Chapter 5: Advanced Serverboard Setup Chapter 5 provides detailed information on the X9DRW-7TPF serverboard, including the locations and functions of connections, headers and jumpers. Refer to this chapter when adding or removing processors or main memory and when reconfiguring the serverboard. ## Chapter 6: Advanced Chassis Setup Refer to Chapter 6 for detailed information on the SC119XTQ-R700WB server chassis. You should follow the procedures given in this chapter when installing, removing or reconfiguring SAS or peripheral drives and when replacing system power supply modules and cooling fans. ## Chapter 7: BIOS The BIOS chapter includes an introduction to BIOS and provides detailed information on running the CMOS Setup Utility. Appendix A: BIOS Error Beep Codes Appendix B: System Specifications # Notes # **Table of Contents** | Cha | pter 1 Introduction | | |-----|--|-----| | 1-1 | Overview | 1-1 | | 1-2 | Serverboard Features | 1-2 | | | Processors | 1-2 | | | Memory | 1-2 | | | Onboard SAS | 1-2 | | | Onboard Serial ATA | 1-2 | | | Rear I/O Ports | 1-2 | | | System Power | 1-3 | | | Hard Drives | 1-3 | | | PCI Expansion Slots | 1-3 | | | Front Control Panel | 1-3 | | | Cooling System | 1-3 | | 1-4 | Contacting Supermicro | 1-5 | | Cha | pter 2 Server Installation | | | 2-1 | Overview | 2-1 | | 2-2 | Unpacking the System | 2-1 | | 2-3 | Preparing for Setup | 2-1 | | | Choosing a Setup Location | 2-1 | | 2-4 | Warnings and Precautions | 2-2 | | | Rack Precautions | 2-2 | | | Server Precautions | 2-2 | | | Rack Mounting Considerations | 2-3 | | | Ambient Operating Temperature | 2-3 | | | Reduced Airflow | 2-3 | | | Mechanical Loading | 2-3 | | | Circuit Overloading | 2-3 | | | Reliable Ground | 2-3 | | 2-5 | Installing the System into a Rack | 2-4 | | | Identifying the Sections of the Rack Rails | 2-4 | | | Inner Rails | 2-5 | | | Outer Rails | 2-6 | | | Installing the Server into a Telco Rack | 2-8 | | Cha | pter 3 System Interface | | | 3-1 | Overview | 3-1 | 3-1 3-2 | | UID | 3-1 | |-----|---|------| | | Power | 3-1 | | 3-3 | Control Panel LEDs | 3-2 | | | Information LED | 3-2 | | | NIC2 | 3-2 | | | NIC1 | 3-2 | | | HDD | 3-3 | | | Power | 3-3 | | 3-4 | Drive Carrier LEDs | 3-3 | | Cha | pter 4 Standardized Warning Statements for AC Systems | | | 4-1 | About Standardized Warning Statements | 4-1 | | | Warning Definition | 4-1 | | | Installation Instructions | 4-4 | | | Circuit Breaker | 4-5 | | | Power Disconnection Warning | 4-6 | | | Equipment Installation | 4-8 | | | Restricted Area | 4-9 | | | Battery Handling | 4-10 | | | Redundant Power Supplies | 4-12 | | | Backplane Voltage | 4-13 | | | Comply with Local and National Electrical Codes | 4-14 | | | Product Disposal | 4-15 | | | Hot Swap Fan Warning | 4-16 | | | Power Cable and AC Adapter | 4-18 | | Cha | pter 5 Advanced Serverboard Setup | | | 5-1 | Handling the Serverboard | 5-1 | | | Precautions | 5-1 | | | Unpacking | 5-1 | | 5-2 | Processor and Heatsink Installation | 5-2 | | | Installing an LGA 2011 Processor | 5-2 | | | Removing the Heatsink | 5-5 | | 5-3 | Connecting Cables | 5-6 | | | Connecting Data Cables | 5-6 | | | Connecting Power Cables | 5-6 | | | Connecting the Control Panel | 5-6 | | 5-4 | I/O Ports | 5-7 | | 5-5 | Installing Memory | 5-8 | | 5-6 | Adding PCI Cards | 5_10 | |------|--------------------------------------|------| | 5-7 | Serverboard Details | | | 5-8 | Connector Definitions | | | 5-9 | Jumper Settings | | | 5-10 | Onboard Indicators | | | 5-11 | SAS/SATA Port Connections | | | 5-12 | Installing Software | | | | SuperDoctor III | | | 5-13 | Onboard Battery | | | Chap | oter 6 Advanced Chassis Setup | | | 6-1 | Static-Sensitive Devices | 6-1 | | | Precautions | 6-1 | | 6-2 | Control Panel | 6-2 | | 6-3 | System Fans | 6-2 | | | System Fan Failure | 6-3 | | | Air Shroud | 6-4 | | | Hard Drive Installation | 6-7 | | | Hard Drive Backplane | 6-9 | | 6-4 | Power Supply | 6-10 | | | Battery Backup Power (BBP™) Feature | 6-10 | | | Power Supply Failure | 6-10 | | Chap | oter 7 BIOS | | | 7-1 | Introduction | 7-1 | | | Starting BIOS Setup Utility | 7-1 | | | How To Change the Configuration Data | 7-2 | | | Starting the Setup Utility | 7-2 | | 7-2 | Main Setup | 7-2 | | 7-3 | Advanced Setup Configurations | 7-4 | | 7-4 | Event Logs | 7-27 | | 7-5 | IPMI | 7-29 | | 7-6 | Boot | 7-31 | | 7-7 | Security | 7-32 | | 7-8 | Save & Exit | 7-33 | | Appe | endix A BIOS Error Beep Codes | | | Anne | andix B System Specifications | | # Chapter 1 ## Introduction ## 1-1 Overview The SuperServer 1027R-72BRFTP. is a high-end server comprised of two main subsystems: the SC119XTQ-R700WB 1U server chassis and the X9DRW-7TPF dual processor serverboard. Please refer to our web site for information on operating systems that have been certified for use with the system (www.supermicro.com). In addition to the serverboard and chassis, various hardware components have been included with the 1027R-72BRFTP., as listed below: - Two air shrouds
(MCP-310-19003-0N and MCP-310-19013-0B) - Two passive CPU heatsinks (SNK-P0047PS) - Cables One CBL-0097L-03 One CBL-0118L-03 - Riser Cards One RSC-R1UW-2E16 One RSC-R1UW-E8R - SAS Accessories One SAS backplane (BPN-SAS-119XTQ) Eight drive carriers (MCP-220-00047-0B) - SuperServer 1027R-72BRFTP Quick Reference Guide **Note:** For your system to work properley, please follow the links below to download all necessary drivers/utilities and the user's manual for your server. - Product manuals: http://www.supermicro.com/support/manuals/ - Product drivers and utilities: ftp://ftp.supermicro.com - Product safety information: http://super-dev/about/policies/safety information.cfm For support, email support@supermicro.com. ### 1-2 Serverboard Features At the heart of the SuperServer 1027R-72BRFTP. lies the X9DRW-7TPF, a dual processor serverboard based on the Intel® C606 chipset. Below are the main features of the serverboard. (See Figure 1-1 for a block diagram of the chipset). ### **Processors** The X9DRW-7TPF supports single or dual Intel® E5-2600 Series (Socket R) processors in LGA 2011 sockets. Please refer to our web site for a complete listing of supported processors (www.supermicro.com). ## Memory The X9DRW-7TPF features 16 DIMM slots that can support up to 512 GB of ECC DDR3-1600/1333/1066/800 RDIMM SDRAM or 128 GB ECC/non-ECC UDIMM type memory. Please refer to Chapter 5 for installing memory. ### **Onboard SAS** A SAS controller is integrated into the chipset to support eight SAS 2.0 ports. The hot-swap SAS drives are connected to a backplane that provides power, bus termination and configuration settings. Unless otherwise stated, SAS is used in this server by default. **Note:** RAID 0, 1, 5, 6, 10, 50 and 60 is supported. Refer to the following ftp site for setup guidelines: <ftp://ftp.supermicro.com/driver/SAS/LSI/LSI_SAS_EmbMRAID_SWUG.pdf>. ### **Onboard Serial ATA** An on-chip SATA controller is integrated into the X9DRW-7TPF to provide a six-port, SATA subsystem (two SATA 3.0 ports and four SATA 2.0 ports), which is RAID 0, 1, 5 and 10 supported (RAID 5 is supported with Windows OS only). **Note:** You must have RAID set up to enable the hot-swap capability of the SATA drives. Documentation on RAID setup guidelines can be found on our web site. ### Rear I/O Ports The color-coded I/O ports include one COM port, a VGA (monitor) port, two USB 2.0 ports, PS/2 mouse and keyboard ports, two 1Gb LAN ports, two 10Gb SFP+ LAN ports and one dedicated IPMI LAN port. ### 1-3 Server Chassis Features The 1027R-72BRFTP is built upon the SC119XTQ-R700WB chassis. Details on the chassis and on servicing procedures can be found in Chapter 6.The following is a general outline of the main features of the chassis. ## **System Power** The SC119XTQ-R700WB features two redundant 700W power supplies. The system does not need to be shut down when replacing or removing a single power supply module. The system also has two Battery Backup Power units. ### **Hard Drives** The chassis was designed to support eight hot-swap SAS or SATA hard drives. ## **PCI Expansion Slots** Two riser cards are included. The RSC-R1UW-E8R is located on the right side of the chassis and supports one low-profile (max. length = 4.1") PCI-E x8 card. The RSC-R1UW-2E16 is located on the left side of the chassis and supports two full-height, half-length PCI-E x16 add-on cards. See section 5-6 of this manual for details. ### **Front Control Panel** The chassis' control panel provides you with system monitoring and control. LEDs indicate system power, HDD activity, network activity (2), system information and UID (Unit Identification). A main power button and a UID button is also included. # **Cooling System** The system has an innovative cooling design that features six sets of 4-cm counterrotating fans located in the middle section of the chassis. Fan speed may be varied by IPMI to respond to fluctuations in system temperature. The power supply module also includes a cooling fan. Figure 1-1. Intel C606 Chipset: System Block Diagram Note: This is a general block diagram. Please see Chapter 5 for details. ## 1-4 Contacting Supermicro ### Headquarters Address: Super Micro Computer, Inc. 980 Rock Ave. San Jose, CA 95131 U.S.A. Tel: +1 (408) 503-8000 Fax: +1 (408) 503-8008 Email: marketing@supermicro.com (General Information) support@supermicro.com (Technical Support) Web Site: www.supermicro.com **Europe** Address: Super Micro Computer B.V. Het Sterrenbeeld 28, 5215 ML 's-Hertogenbosch, The Netherlands Tel: +31 (0) 73-6400390 Fax: +31 (0) 73-6416525 Email: sales@supermicro.nl (General Information) support@supermicro.nl (Technical Support) rma@supermicro.nl (Customer Support) Asia-Pacific Address: Super Micro Computer, Inc. 3F, No. 150, Jian 1st Rd. Zhonghe Dist., New Taipei City 23511 Taiwan (R.O.C) Tel: +886-(2) 8226-3990 Fax: +886-(2) 8226-3992 Web Site: www.supermicro.com.tw Technical Support: Email: support@supermicro.com.tw Tel: +886-(2)-8226-3990 # Notes # **Chapter 2** ## Server Installation ### 2-1 Overview This chapter provides a quick setup checklist to get your 1027R-72BRFTP. up and running. Following these steps in the order given should enable you to have the system operational within a minimum amount of time. This quick setup assumes that your system has come to you with the processors and memory pre-installed. If your system is not already fully integrated with a serverboard, processors, system memory etc., please turn to the chapter or section noted in each step for details on installing specific components. ## 2-2 Unpacking the System You should inspect the box the 1027R-72BRFTP. was shipped in and note if it was damaged in any way. If the server itself shows damage you should file a damage claim with the carrier who delivered it. Decide on a suitable location for the rack unit that will hold the server. It should be situated in a clean, dust-free area that is well ventilated. Avoid areas where heat, electrical noise and electromagnetic fields are generated. You will also need it placed near a grounded power outlet. Be sure to read the Rack and Server Precautions in the next section. ## 2-3 Preparing for Setup The box the server was shipped in should include two sets of rail assemblies, two rail mounting brackets and the mounting screws you will need to install the system into the rack. Follow the steps in the order given to complete the installation process in a minimum amount of time. Please read this section in its entirety before you begin the installation procedure outlined in the sections that follow. ## **Choosing a Setup Location** Leave enough clearance in front of the rack to enable you to open the front door completely (~25 inches) and approximately 30 inches of clearance in the back of the rack to allow for sufficient airflow and ease in servicing. This product is for installation only in a Restricted Access Location (dedicated equipment rooms, service closets and the like). This product is not suitable for use with visual display work place devices according to §2 of the German Ordinance for Work with Visual Display Units ## 2-4 Warnings and Precautions ### **Rack Precautions** - Ensure that the leveling jacks on the bottom of the rack are fully extended to the floor with the full weight of the rack resting on them. - In single rack installation, stabilizers should be attached to the rack. In multiple rack installations, the racks should be coupled together. - Always make sure the rack is stable before extending a component from the rack. - You should extend only one component at a time extending two or more simultaneously may cause the rack to become unstable. ### **Server Precautions** - Review the electrical and general safety precautions in Chapter 4. - Determine the placement of each component in the rack before you install the rails. - Install the heaviest server components on the bottom of the rack first, and then work up. - Use a regulating uninterruptible power supply (UPS) to protect the server from power surges, voltage spikes and to keep your system operating in case of a power failure. - Allow the hot plug SAS drives and power supply modules to cool before touching them. - Always keep the rack's front door and all panels and components on the servers closed when not servicing to maintain proper cooling. ## **Rack Mounting Considerations** ### **Ambient Operating Temperature** If installed in a closed or multi-unit rack assembly, the ambient operating temperature of the rack environment may be greater than the ambient temperature of the room. Therefore, consideration should be given to installing the equipment in an environment compatible with the manufacturer's maximum rated ambient temperature (Tmra). ### Reduced Airflow Equipment should be mounted into a rack so that the amount of airflow required for safe operation is not compromised. ### Mechanical Loading Equipment should be mounted into a rack so that a hazardous condition does not arise due to uneven mechanical loading. ### Circuit Overloading Consideration should be given to the connection of the equipment to the power supply circuitry and the effect that any possible overloading of circuits might have on overcurrent protection and power supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern. ### Reliable Ground A reliable ground must be maintained at all times. To ensure this, the rack itself should be grounded. Particular attention should be given to power supply connections other than the direct connections to the branch circuit (i.e. the use of power strips, etc.). **Warning!** To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety: - This unit should be mounted at the bottom of the rack if it is the only unit in the rack. - When mounting this unit
in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack. - If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. ## 2-5 Installing the System into a Rack This section provides information on installing the server into a rack unit with the rack rails provided. There are a variety of rack units on the market, which may mean the assembly procedure will differ slightly. You should also refer to the installation instructions that came with the rack unit you are using. ## Identifying the Sections of the Rack Rails You should have received two rack rail assemblies in the rack mounting kit. Each assembly consists of two sections: an inner fixed chassis rail that secures directly to the server chassis and an outer fixed rack rail that secures directly to the rack itself (see Figure 2-1). Note: The rails will fit a rack between 26" and 33.5" deep. Inner Rail Extensions Figure 2-1. Identifying the Inner Rails and Inner Rail Extensions Inner Rails (Inner rails are pre-installed on the chassis) Figure 2-2: Identifying the Sections of the Rack Rails (right side rail shown) ### **Inner Rails** The SC119 chassis inner rails are composed of two sections: inner rails and inner rail extensions. The inner rails are pre-attached and do not interfere with normal use of the chassis if you decide not to use a server rack. Attach the inner rail extension to stabilize the chassis within the rack. ## Installing the Inner Rails - Place the inner rail extensions on the side of the chassis aligning the hooks of the chassis with the rail extension holes. Make sure the extension faces "outward" just like the pre-attached inner rail. - 2 Slide the extension toward the front of the chassis - 3. Secure the chassis with 2 screws as illustrated. - 4. Repeat steps 1-3 for the other inner rail extension. ### **Outer Rails** ### Installing the Outer Rails to the Rack - Attach the shorter outer rail to the outside of the longer outer rail. You must align the pins with the slides. Both bracket ends must face the same direction. - 2. Adjust the outer rails so that they fit snugly within the rack. - 3. Secure the longer outer rail to the front of the rackl with two screws - 4. Secire the shorter outer rail to the rear rack with three screws. - 5. Repeat steps 1-4 for the remaining outer rail. ### **Locking Tabs** Both chassis rails have a locking tab, which serves two functions. The first is to lock the server into place when installed and pushed fully into the rack, which is its normal position. Secondly, these tabs also lock the server in place when fully extended from the rack. This prevents the server from coming completely out of the rack when you pull it out for servicing. Figure 2-3. Assembling the Outer Rails ## Installing the Server into the Rack ## Installing the Chassis into a Rack (Figure 2-4) - Confirm that the chassis includes the inner rails and rail extensions, and confirm that the outer rails are installed on the rack. - 2. Align the inner rails on the chassis with the front of the outer rails on the rack. - 3. Slide the inner rails into the outer rails, keeping the pressure even on both sides (it may be necessary to depress the locking tabs when inserting). When the server has been pushed completely into the rack, you should hear the locking tabs click into the locked position. - (Optional) Insert and tighten the thumbscrews that hold the front of the chassis to the rack. Figure 2-4. Installing the Server into a Rack **Note**: Figures are for illustrative purposes only. Servers should always be installed in racks from the bottom up. ## Installing the Server into a Telco Rack To install the chassis into a Telco type rack, use two L-shaped brackets on either side of the chassis (four total). First, determine how far the server will extend out the front of the rack. Larger chassis should be positioned to balance the weight between front and back. If a bezel is included on your server, remove it. Then attach the two front brackets to each side of the chassis, then the two rear brackets positioned with just enough space to accommodate the width of the telco rack. Finish by sliding the chassis into the rack and tightening the brackets to the rack. Figure 2-5: Installing the Server into a Telco Rack **Stability hazard**. The rack stabilizing mechanism must be in place, or the rack must be bolted to the floor before you slide the unit out for servicing. Failure to stabilize the rack can cause the rack to tip over. **Warning**: do not pick up the server with the front handles. They are designed to pull the system from a rack only. # **Chapter 3** # **System Interface** ## 3-1 Overview There are several LEDs on the control panel as well as others on the hard drive carriers to keep you constantly informed of the overall status of the system as well as the activity and health of specific components. There are also three buttons on the chassis control panel and an on/off switch on the power supply. This chapter explains the meanings of all LED indicators and the appropriate response you may need to take. ## 3-2 Control Panel Buttons There are three push-buttons located on the front of the chassis: UID button, a reset button and a power on/off button. #### UID Depressing the UID (unit identifier) button illuminates an LED on both the front and rear of the chassis for easy system location in large stack configurations. The LED will remain on until the button is pushed a second time. Another UID button on the rear of the chassis serves the same function. ### **Power** The main power switch is used to apply or remove power from the power supply to the server system. Turning off system power with this button removes the main power but keeps standby power supplied to the system. ### 3-3 Control Panel LEDs The control panel located on the front of the SC119XTQ chassis has five LEDs. These LEDs provide you with critical information related to different parts of the system. This section explains what each LED indicates when illuminated and any corrective action you may need to take. ### Information LED This LED will be blue when the UID function has been activated. When this LED flashes red, it indicates a fan failure. When red continuously it indicates an overheat condition, which may be caused by cables obstructing the airflow in the system or the ambient room temperature being too warm. Check the routing of the cables and make sure all fans are present and operating normally. You should also check to make sure that the chassis covers are installed. Finally, verify that the heatsinks are installed properly (see Chapter 5). This LED will remain flashing or on as long as the indicated condition exists. | Universal Information LED States | | | | |----------------------------------|----------------------------|--|--| | State | Indication | | | | Fast Blinking Red (1x/sec) | Fan Fail | | | | Solid Red | CPU Overheat | | | | Slow Blinking Red (1x/4 sec) | Power Fail | | | | Solid Blue | Local UID Button Depressed | | | | Blinking Blue | IPMI-Activated UID | | | ### NIC₂ Indicates network activity on GLAN2 when flashing . #### NIC₁ Indicates network activity on GLAN1 when flashing. ### **HDD** Indicates IDE channel activity. On the 6016T-6RFT+/6016T-6F+ this light indicates HDD and/or DVD-ROM drive activity when flashing. ### **Power** Indicates power is being supplied to the system's power supply units. This LED should normally be illuminated when the system is operating. ## 3-4 Drive Carrier LEDs - Green: Each hard drive carrier has a green LED. When illuminated, this green LED indicates drive activity. A connection to the SAS backplane enables this LED to blink on and off when that particular drive is being accessed. Please refer to Chapter 6 for instructions on replacing failed hard drives. - Red: The red LED to indicate a hard drive failure. If one of the drives fail, you should be notified by your system management software. Please refer to Chapter 6 for instructions on replacing failed hard drives. ## Notes # Chapter 4 # **Standardized Warning Statements for AC Systems** ## 4-1 About Standardized Warning Statements The following statements are industry standard warnings, provided to warn the user of situations which have the potential for bodily injury. Should you have questions or experience difficulty, contact Supermicro's Technical Support department for assistance. Only certified technicians should attempt to install or configure components. Read this appendix in its entirety before installing or configuring components in the Supermicro chassis. These warnings may also be found on our web site at http://www.supermicro.com/about/policies/safety_information.cfm. ## **Warning Definition** ### Warning! This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. ### 警告の定義 この警告サインは危険を意味します。 人身事故につながる可能性がありますので、いずれの機器でも動作させる前に、 電気回路に含まれる危険性に注意して、標準的な事故防止策に精诵して下さい。 ### 此警告符号代表危险。 您正处于可能受到严重伤害的工作环境中。在您使用设备开始工作之前,必须充分 意识到触电的危险,并熟练掌握防止事故发生的标准工作程序。请根据每项警告结 尾的声明号码找到此设备的安全性警告说明的翻译文本。 ### 此警告符號代表危險。 您正處於可能身體可能會受損傷的工作環境中。在您使用任何設備之前,請注意觸電的危險,並且要熟悉預防事故發生的標準工作程序。請依照每一注意事項後的號 碼找到相關的翻譯說明內容。 ### Warnung ### WICHTIGE SICHERHEITSHINWEISE Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung vor Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden. BEWAHREN SIE DIESE HINWEISE GUT AUF. ### INSTRUCCIONES IMPORTANTES DE
SEGURIDAD Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo. GUARDE ESTAS INSTRUCCIONES. ### IMPORTANTES INFORMATIONS DE SÉCURITÉ Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement. CONSERVEZ CES INFORMATIONS. ### תקנון הצהרות אזהרה הצהרות הבאות הן אזהרות על פי תקני התעשייה, על מנת להזהיר את המשתמש מפני חבלה פיזית אפשרית. במידה ויש שאלות או היתקלות בבעיה כלשהי, יש ליצור קשר עם מחלקת תמיכה טכנית של סופרמיקרו. טכנאים מוסמכים בלבד רשאים להתקין או להגדיר את הרכיבים. יש לקרוא את הנספח במלואו לפני התקנת או הגדרת הרכיבים במארזי סופרמיקרו. تحذير! هذا الرمز يعني خطر انك في حالة يمكن أن تتسبب في اصابة جسدية . قبل أن تعمل على أي معدات،كن على علم بالمخاطر الناجمة عن الدوائر الكهربائية وكن على دراية بالممارسات الوقائية لمنع وقوع أي حوادث استخدم رقم البيان المنصوص في نهاية كل تحذير للعثور ترجمتها 안전을 위한 주의사항 경고! 이 경고 기호는 위험이 있음을 알려 줍니다. 작업자의 신체에 부상을 야기 할 수 있는 상태에 있게 됩니다. 모든 장비에 대한 작업을 수행하기 전에 전기회로와 관련된 위험요소들을 확인하시고 사전에 사고를 방지할 수 있도록 표준 작업절차를 준수해 주시기 바랍니다. 해당 번역문을 찾기 위해 각 경고의 마지막 부분에 제공된 경고문 번호를 참조하십시오 ### BELANGRIJKE VEILIGHEIDSINSTRUCTIES Dit waarschuwings symbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij een elektrische installatie betrokken risico's en dient u op de hoogte te zijn van de standaard procedures om ongelukken te voorkomen. Gebruik de nummers aan het eind van elke waarschuwing om deze te herleiden naar de desbetreffende locatie. BEWAAR DEZE INSTRUCTIES ### Installation Instructions ## Warning! Read the installation instructions before connecting the system to the power source. 設置手順書 システムを電源に接続する前に、設置手順書をお読み下さい。 ### 警告 将此系统连接电源前,请先阅读安装说明。 ### 警告 將系統與電源連接前,請先閱讀安裝說明。 #### Warnung Vor dem Anschließen des Systems an die Stromquelle die Installationsanweisungen lesen ### ¡Advertencia! Lea las instrucciones de instalación antes de conectar el sistema a la red de alimentación. ### Attention Avant de brancher le système sur la source d'alimentation, consulter les directives d'installation יש לקרוא את הוראות התקנה לפני חיבור המערכת למקור מתח. 시스템을 전원에 연결하기 전에 설치 안내를 읽어주십시오. ### Waarschuwing Raadpleeg de installatie-instructies voordat u het systeem op de voedingsbron aansluit. ## Circuit Breaker ## Warning! This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 20 A. サーキット・ブレーカー この製品は、短絡(過電流)保護装置がある建物での設置を前提としています。 保護装置の定格が250 V、20 Aを超えないことを確認下さい。 ### 警告 此产品的短路(过载电流)保护由建筑物的供电系统提供,确保短路保护设备的额定电流不大于250V.20A。 ### 警告 此產品的短路(過載電流)保護由建築物的供電系統提供,確保短路保護設備的額定電流不大於250V,20A。 ### Warnung Dieses Produkt ist darauf angewiesen, dass im Gebäude ein Kurzschlussbzw. Überstromschutz installiert ist. Stellen Sie sicher, dass der Nennwert der Schutzvorrichtung nicht mehr als: 250 V, 20 A beträgt. ### ¡Advertencia! Este equipo utiliza el sistema de protección contra cortocircuitos (o sobrecorrientes) del edificio. Asegúrese de que el dispositivo de protección no sea superior a: 250 V. 20 A. ### Attention Pour ce qui est de la protection contre les courts-circuits (surtension), ce produit dépend de l'installation électrique du local. Vérifiez que le courant nominal du dispositif de protection n'est pas supérieur à :250 V, 20 A. מוצר זה מסתמך על הגנה המותקנת במבנים למניעת קצר חשמלי. יש לוודא כי המכשיר המגן מפני הקצר החשמלי הוא לא יותר מ-A 250 V, 20 A هذا المنتج يعتمد على معدات الحماية من الدوائر القصيرة التي تم تثبيتها في المبنى تأكد من أن تقييم الجهاز الوقائي ليس أكثر من: 20A, 250V 경고! 이 제품은 전원의 단락(과전류)방지에 대해서 전적으로 건물의 관련 설비에 의존합니다. 보호장치의 정격이 반드시 250V(볼트), 20A(암페어)를 초과하지 않도록 해야 합니다. ### Waarschuwing Dit product is afhankelijk van de kortsluitbeveiliging (overspanning) van uw electrische installatie. Controleer of het beveiligde aparaat niet groter gedimensioneerd is dan 220V, 20A. ## **Power Disconnection Warning** ### Warning! The system must be disconnected from all sources of power and the power cord removed from the power supply module(s) before accessing the chassis interior to install or remove system components. ### 電源切断の警告 システムコンポーネントの取り付けまたは取り外しのために、シャーシー内部にアクセス するには、 システムの電源はすべてのソースから切断され、電源コードは電源モジュールから取り 外す必要があります。 ### 警告 在你打开机箱并安装或移除内部器件前,必须将系统完全断电,并移除电源线。 ### 警告 在您打開機殼安裝或移除內部元件前,必須將系統完全斷電,並移除電源線。 ### Warnung Das System muss von allen Quellen der Energie und vom Netzanschlusskabel getrennt sein, das von den Spg. Versorgungsteilmodulen entfernt wird, bevor es auf den Chassisinnenraum zurückgreift, um Systemsbestandteile anzubringen oder zu entfernen. ### ¡Advertencia! El sistema debe ser disconnected de todas las fuentes de energía y del cable eléctrico quitado de los módulos de fuente de alimentación antes de tener acceso el interior del chasis para instalar o para quitar componentes de sistema. #### Attention Le système doit être débranché de toutes les sources de puissance ainsi que de son cordon d'alimentation secteur avant d'accéder à l'intérieur du chassis pour installer ou enlever des composants de système. ### אזהרה! יש לנתק את המערכת מכל מקורות החשמל ויש להסיר את כבל החשמלי מהספק לפני גישה לחלק הפנימי של המארז לצורך התקנת או הסרת רכיבים. يجب فصل النظام من جميع مصادر الطاقة وإزالة سلك الكهرباء من وحدة امداد الطاقة قبل المناطق الداخلية للهبكل لتثبيت أو إزالة مكونات الجهاز 경고! 시스템에 부품들을 장착하거나 제거하기 위해서는 섀시 내부에 접근하기 전에 반드시 전원 공급장치로부터 연결되어있는 모든 전원과 전기코드를 분리해주어야 합니다 ### Waarschuwing Voordat u toegang neemt tot het binnenwerk van de behuizing voor het installeren of verwijderen van systeem onderdelen, dient u alle spanningsbronnen en alle stroomkabels aangesloten op de voeding(en) van de behuizing te verwijderen ## **Equipment Installation** ### Warning! Only trained and qualified personnel should be allowed to install, replace, or service this equipment. ### 機器の設置 トレーニングを受け認定された人だけがこの装置の設置、交換、またはサービスを許可されています。 ### 警告 只有经过培训且具有资格的人员才能进行此设备的安装、更换和维修。 ### 警告 只有經過受訓且具資格人員才可安裝、更換與維修此設備。 ### Warnung Das Installieren, Ersetzen oder Bedienen dieser Ausrüstung sollte nur geschultem, qualifiziertem Personal gestattet werden. ### ¡Advertencia! Solamente el personal calificado debe instalar, reemplazar o utilizar este equipo. ### Attention Il est vivement recommandé de confier l'installation, le remplacement et la maintenance de ces équipements à des personnels gualifiés et expérimentés. אזהרה! צוות מוסמך כלבד רשאי להתקין, להחליף את הציוד או לתת שירות עבור הציוד. يجب أن يسمح فقط للموظفين المؤهلين والمدربين لتركيب واستبدال أو خدمة هذا الجهاز 경고! 훈련을 받고 공인된 기술자만이 이 장비의 설치, 교체 또는 서비스를 수행할 수 있습니다. ### Waarschuwing Deze apparatuur mag alleen worden geïnstalleerd, vervangen of hersteld door geschoold en gekwalificeerd personeel. ### **Restricted Area** ### Warning This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. (This warning does not apply to workstations). ### アクセス制限区域 このユニットは、アクセス制限区域に設置されることを想定しています。 アクセス制限区域は、特別なツール、鍵と錠前、その他のセキュリティの手段を用いての み出入りが可能です。 ### 警告 此部件应安装在限制进出的场所,限制进出的场所指只能通过使用特殊工具、锁和钥匙或其它安全手段进出的场所。 ### 警告 此裝置僅限安裝於進出管制區域,進出管制區域係指僅能以特殊工具、鎖頭及鑰匙或其他安全方式才能進入的區域。 ### Warnung Diese Einheit ist zur Installation in Bereichen mit beschränktem Zutritt vorgesehen. Der Zutritt zu derartigen Bereichen ist nur mit einem Spezialwerkzeug, Schloss und Schlüssel oder einer sonstigen Sicherheitsvorkehrung möglich. ### ¡Advertencia! Esta unidad ha sido diseñada para instalación en áreas de acceso restringido. Sólo puede obtenerse acceso a una de estas áreas mediante la utilización de una herramienta especial, cerradura con llave u otro medio de seguridad. ### Attention Cet appareil doit être installée dans des zones d'accès réservés. L'accès à une zone d'accès réservé n'est possible qu'en utilisant un outil spécial, un mécanisme de verrouillage et une clé, ou tout autre moyen de sécurité. ## אזור עם גישה מוגבלת ### אזהרה! יש להתקין את היחידה באזורים שיש בהם הגבלת גישה. הגישה ניתנת בעזרת כלי אבטחה בלבד (מפתח, מנעול וכד׳). تم تخصيص هذه الوحدة لتركيبها في مناطق محظورة . يمكن الوصول إلى منطقة محظورة فقط من خلال استخدام أداة خاصة، قفل ومفتاح أو أي وسيلة أخرى للالأمان 경고! 이 장치는 접근이 제한된 구역에 설치하도록 되어있습니다. 특수도구, 잠금 장치 및 키. 또는 기타 보안 수단을 통해서만 접근 제한 구역에 들어갈 수 있습니다. ### Waarschuwing Dit apparaat is bedoeld voor installatie in gebieden met een beperkte toegang. Toegang tot dergelijke gebieden kunnen alleen verkregen worden door gebruik te maken van speciaal gereedschap, slot en sleutel of andere veiligheidsmaatregelen. ## **Battery Handling** ### Warning! There is the danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions 電池の取り扱い 電池交換が正しく行われなかった場合、破裂の危険性があります。 交換する電池はメーカーが推奨する型、または同等のものを使用下さい。 使用済電池は製造元の指示に従って処分して下さい。 ### 警告 电池更换不当会有爆炸危险。请只使用同类电池或制造商推荐的功能相当的电池更 换原有电池。请按制造商的说明处理废旧电池。 ### 警告 電池更換不當會有爆炸危險。請使用製造商建議之相同或功能相當的電池更換原有 電池。請按照製造商的說明指示處理廢棄舊電池。 ## Warnung Bei Einsetzen einer falschen Batterie besteht Explosionsgefahr. Ersetzen Sie die Batterie nur durch den gleichen oder vom Hersteller empfohlenen
Batterietyp. Entsorgen Sie die benutzten Batterien nach den Anweisungen des Herstellers. ### Attention Danger d'explosion si la pile n'est pas remplacée correctement. Ne la remplacer que par une pile de type semblable ou équivalent, recommandée par le fabricant. Jeter les piles usagées conformément aux instructions du fabricant. ### ¡Advertencia! Existe peligro de explosión si la batería se reemplaza de manera incorrecta. Reemplazar la batería exclusivamente con el mismo tipo o el equivalente recomendado por el fabricante. Desechar las baterías gastadas según las instrucciones del fabricante ### אזהרה! קיימת סכנת פיצוץ של הסוללה במידה והוחלפה בדרך לא תקינה. יש להחליף את הסוללה בסוג התואם מחברת יצרן מומלצת. סילוק הסוללות המשומשות יש לבצע לפי הוראות היצרן. هناك خطر من انفجار في حالة استبدال البطارية بطريقة غير صحيحة فعليك استبدال البطارية فعليك استبدال البطارية فعليك فقط بنفس النوع أو ما يعادلها كما أوصت به الشركة المصنعة تخلص من البطار بات المستعملة و فقا لتعليمات الشركة الصانعة #### 경고! 배터리가 올바르게 교체되지 않으면 폭발의 위험이 있습니다. 기존 배터리와 동일하거나 제조사에서 권장하는 동등한 종류의 배터리로만 교체해야 합니다. 제조사의 안내에 따라 사용된 배터리를 처리하여 주십시오. ## Waarschuwing Er is ontploffingsgevaar indien de batterij verkeerd vervangen wordt. Vervang de batterij slechts met hetzelfde of een equivalent type die door de fabrikant aanbevolen wordt. Gebruikte batterijen dienen overeenkomstig fabrieksvoorschriften afgevoerd te worden. # **Redundant Power Supplies** # Warning! This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. # 冗長電源装置 このユニットは複数の電源装置が接続されている場合があります。 ユニットの電源を切るためには、すべての接続を取り外さなければなりません。 ### 警告 此部件连接的电源可能不止一个,必须将所有电源断开才能停止给该部件供电。 ### 警告 此裝置連接的電源可能不只一個,必須切斷所有電源才能停止對該裝置的供電。 ### Warnung Dieses Gerät kann mehr als eine Stromzufuhr haben. Um sicherzustellen, dass der Einheit kein trom zugeführt wird, müssen alle Verbindungen entfernt werden. ## ¡Advertencia! Puede que esta unidad tenga más de una conexión para fuentes de alimentación. Para cortar por completo el suministro de energía, deben desconectarse todas las conexiones. ### Attention Cette unité peut avoir plus d'une connexion d'alimentation. Pour supprimer toute tension et tout courant électrique de l'unité, toutes les connexions d'alimentation doivent être débranchées. # אם קיים יותר מספק אחד #### אזהרה! ליחדה יש יותר מחיבור אחד של ספק. יש להסיר את כל החיבורים על מנת לרוקן את היחידה. 경고! 이 장치에는 한 개 이상의 전원 공급 단자가 연결되어 있을 수 있습니다. 이 장치에 전원을 차단하기 위해서는 모든 연결 단자를 제거해야만 합니다. # Waarschuwing Deze eenheid kan meer dan één stroomtoevoeraansluiting bevatten. Alle aansluitingen dienen verwijderd te worden om het apparaat stroomloos te maken. # **Backplane Voltage** # Warning! Hazardous voltage or energy is present on the backplane when the system is operating. Use caution when servicing. ## バックプレーンの電圧 システムの稼働中は危険な電圧または電力が、バックプレーン上にかかっています。 修理する際には注意ください。 ### 警告 当系统正在进行时,背板上有很危险的电压或能量,进行维修时务必小心。 ### 警告 當系統正在進行時,背板上有危險的電壓或能量,進行維修時務必小心。 ## Warnung Wenn das System in Betrieb ist, treten auf der Rückwandplatine gefährliche Spannungen oder Energien auf. Vorsicht bei der Wartung. ### ¡Advertencia! Cuando el sistema está en funcionamiento, el voltaje del plano trasero es peligroso. Tenga cuidado cuando lo revise. ### Attention Lorsque le système est en fonctionnement, des tensions électriques circulent sur le fond de panier. Prendre des précautions lors de la maintenance. # מתח בפנל האחורי אזהרה! קיימת סכנת מתח בפנל האחורי בזמן תפעול המערכת. יש להיזהר במהלך העבודה. 경고! 시스템이 동작 중일 때 후면판 (Backplane)에는 위험한 전압이나 에너지가 발생합니다. 서비스 작업 시 주의하십시오. ## Waarschuwing Een gevaarlijke spanning of energie is aanwezig op de backplane wanneer het systeem in gebruik is. Voorzichtigheid is geboden tijdens het onderhoud. # **Comply with Local and National Electrical Codes** # Warning! Installation of the equipment must comply with local and national electrical codes. 地方および国の電気規格に準拠 機器の取り付けはその地方および国の電気規格に準拠する必要があります。 ## 警告 设备安装必须符合本地与本国电气法规。 警告 設備安裝必須符合本地與本國電氣法規。 ### Warnung Die Installation der Geräte muss den Sicherheitsstandards entsprechen. ### ¡Advertencia! La instalacion del equipo debe cumplir con las normas de electricidad locales y nacionales. ## Attention L'équipement doit être installé conformément aux normes électriques nationales et locales. # תיאום חוקי החשמל הארצי אזהרה! התקנת הציוד חייבת להיות תואמת לחוקי החשמל המקומיים והארציים. تركيب المعدات الكهربائية يجب أن يمتثل للقوانين المحلية والوطنية المتعلقة بالكهرباء 경고! 현 지역 및 국가의 전기 규정에 따라 장비를 설치해야 합니다. ### Waarschuwing Bij installatie van de apparatuur moet worden voldaan aan de lokale en nationale elektriciteitsvoorschriften. # **Product Disposal** ### Warning! Ultimate disposal of this product should be handled according to all national laws and regulations. ## 製品の廃棄 この製品を廃棄処分する場合、国の関係する全ての法律・条例に従い処理する必要があります。 ### 警告 本产品的废弃处理应根据所有国家的法律和规章进行。 ### 警告 本產品的廢棄處理應根據所有國家的法律和規章進行。 ### Warnung Die Entsorgung dieses Produkts sollte gemäß allen Bestimmungen und Gesetzen des Landes erfolgen. ## ¡Advertencia! Al deshacerse por completo de este producto debe seguir todas las leyes y reglamentos nacionales. ### Attention La mise au rebut ou le recyclage de ce produit sont généralement soumis à des lois et/ou directives de respect de l'environnement. Renseignez-vous auprès de l'organisme compétent. סילוק המוצר אזהרה! סילוק סופי של מוצר זה חייב להיות בהתאם להנחיות וחוקי המדינה. عند التخلص النهائي من هذا المنتج ينبغي التعامل معه وفقا لجميع القوانين واللوائح الوطنية 경고! 이 제품은 해당 국가의 관련 법규 및 규정에 따라 폐기되어야 합니다. ## Waarschuwing De uiteindelijke verwijdering van dit product dient te geschieden in overeenstemming met alle nationale wetten en reglementen. # Hot Swap Fan Warning ## Warning! The fans might still be turning when you remove the fan assembly from the chassis. Keep fingers, screwdrivers, and other objects away from the openings in the fan assembly's housing. ファン・ホットスワップの警告 シャーシから冷却ファン装置を取り外した際、ファンがまだ回転している可能性があります。ファンの開口部に、指、ドライバー、およびその他のものを近づけないで下さい。 ### 警告 当您从机架移除风扇装置,风扇可能仍在转动。小心不要将手指、螺丝起子和其他 物品太靠近风扇 ### 警告 當您從機架移除風扇裝置,風扇可能仍在轉動。小心不要將手指、螺絲起子和其他 物品太靠沂風扇。 ### Warnung Die Lüfter drehen sich u. U. noch, wenn die Lüfterbaugruppe aus dem Chassis genommen wird. Halten Sie Finger, Schraubendreher und andere Gegenstände von den Öffnungen des Lüftergehäuses entfernt. ## ¡Advertencia! Los ventiladores podran dar vuelta cuando usted quite ell montaje del ventilador del chasis. Mandtenga los dedos, los destornilladores y todos los objetos lejos de las aberturas del ventilador #### Attention Il est possible que les ventilateurs soient toujours en rotation lorsque vous retirerez le bloc ventilateur du châssis. Prenez garde à ce que doigts, tournevis et autres objets soient éloignés du logement du bloc ventilateur. #### אזהרה! כאשר מסירים את חלקי המאוורר מהמארז, יתכן והמאווררים עדיין עובדים. יש להרחיק למרחק בטוח את האצבעות וכלי עבודה שונים מהפתחים בתוך המאוורר من الممكن أن المراوح لا تزال تدور عند إزالة كتلة المروحة من الهيكل يجب إبقاء الأصابع ومفكات البراغي وغيرها من الأشياء بعيدا عن الفتحات في كتلة المروحة. ### 경고! 새시로부터 팬 조립품을 제거할 때 팬은 여전히 회전하고 있을 수 있습니다. 팬 조림품 외관의 열려있는 부분들로부터 손가락 및 스크류드라이버, 다른 물체들이 가까이 하지 않도록 배치해 주십시오. ### Waarschuwing Het is mogelijk dat de ventilator nog draait tijdens het verwijderen van het ventilatorsamenstel uit het chassis. Houd uw vingers, schroevendraaiers en eventuele andere voorwerpen uit de buurt van de openingen in de ventilatorbehuizing. # **Power Cable and AC Adapter** # Warning! When installing the product, use the provided or designated connection cables, power cables and AC adaptors. Using any other cables and adaptors could cause a malfunction or a fire. Electrical Appliance and Material Safety Law prohibits the use of UL or CSA -certified cables (that have UL/CSA shown on the code) for any other electrical devices than products designated by Supermicro only. 電源コードとACアダプター 製品を設置する場合、提供または指定された接続ケーブル、電源コードとACアダプターを使用下さい。 他のケーブルやアダプタを使用すると故障や火災の原因になることがあります。 電気用品安全法は、ULまたはCSA認定のケーブル(UL/CSEマークがコードに表記)を Supermicroが指定する製品以外に使用することを禁止しています。 ## 警告 安装此产品时,请使用本身提供的或指定的连接线,电源线和电源适配器.使用其它线材或适配器可能会引起故障或火灾。除了Supermicro所指定的产品,电气用品和材料安全法律规定禁止使用未经UL或CSA认证的线材。(线材上会显示UL/CSA符号)。 ## 警告 安裝此產品時,請使用本身提供的或指定的連接線,電源線和電源適配器.使用其它線材或適配器可能會引起故障或火災。除了Supermicro所指定的產品,電氣用品和材料安全法律規定禁止使用未經UL或CSA認證的線材。(線材上會顯示UL/CSA符號)。 # Warnung Bei der Installation des Produkts, die zur Verfügung gestellten oder benannt Anschlusskabel, Stromkabel und Netzteile. Verwendung anderer Kabel und Adapter kann zu einer Fehlfunktion oder ein Brand entstehen. Elektrische Geräte und Material Safety Law verbietet die Verwendung von UL-oder CSA-zertifizierte Kabel, UL oder CSA auf der Code für alle anderen elektrischen Geräte als Produkte von Supermicro nur bezeichnet gezeigt haben. ### ¡Advertencia! Al instalar el producto, utilice los cables de conexión previstos o designados, los cables y adaptadores de CA. La utilización de otros cables y adaptadores podría ocasionar un mal funcionamiento o un incendio. Aparatos Eléctricos y la Ley de Seguridad del Material prohíbe el uso de UL o CSA cables certificados que tienen UL o CSA se muestra en el código de otros dispositivos eléctricos que los productos designados por Supermicro solamente. ### Attention Lors de l'installation du produit, utilisez les bables de connection fournis ou désigné. L'utilisation d'autres cables et adaptateurs peut provoquer un dysfonctionnement ou un incendie. Appareils électroménagers et de loi sur la sécurité Matériel interdit l'utilisation de UL ou CSA câbles certifiés qui ont UL ou CSA indiqué sur le code pour tous les autres appareils électriques que les produits désignés par Supermicro seulement. # חשמליים ומתאמי ### אזהרה! כאשר מתקינים את המוצר, יש להשתמש בכבלים, ספקים ומתאמים AC אשר נועדו וסופקו לשם כך. שימוש בכל כבל או מתאם אחר יכול לגרום לתקלה או קצר חשמלי. על פי חוקי שימוש במכשירי חשמל וחוקי בטיחות, קיים איסור להשתמש בכבלים המוסמכים ב- UL או ב- CSA (כשאר מופיע עליהם קוד של (UL/CSA) עבור כל מוצר חשמלי אחר שלא צוין על ידי סופרקמיקרו בלבד. عند تركيب الجهاز يجب استخدام كابلات التوصيل،
والكابلات الكهربائية و محو لات التيار المتر دد التي . أن استخدام أي كابلات ومحولات أخرى يتسبب في حدوث عطل أو حريق. تم توفير ها لك مع المنتج الأجهزة الكهربائية ومواد قانون السلامة يحظر استخدام الكابلات CSA أو UL معتمدة من قبل Supermicro لأي أجهزة كهربائية أخرى غير المنتجات المعينة من قبل (UL/CSA (التي تحمل علامة (UL/CSA)) 경고! 제품을 설치할 때에는 제공되거나 지정된 연결케이블과 전원케이블, AC어댑터를 사용해야 합니다. 그 밖의 다른 케이블들이나 어댑터들은 고장 또는 화재의 원인이될 수 있습니다. 전기용품안전법 (Electrical Appliance and Material Safety Law)은 슈퍼마이크로에서 지정한 제품들 외에는 그 밖의 다른 전기 장치들을 위한 UL또는 CSA에서 인증한 케이블(전선 위에 UL/CSA가 표시)들의 사용을 금지합니다. ## Waarschuwing Bij het installeren van het product, gebruik de meegeleverde of aangewezen kabels, stroomkabels en adapters. Het gebruik van andere kabels en adapters kan leiden tot een storing of een brand. Elektrisch apparaat en veiligheidsinformatiebladen wet verbiedt het gebruik van UL of CSA gecertificeerde kabels die UL of CSA die op de code voor andere elektrische apparaten dan de producten die door Supermicro alleen. # **Notes** # **Chapter 5** # **Advanced Serverboard Setup** This chapter covers the steps required to install processors and heatsinks to the X9DRW-7TPF serverboard, connect the data and power cables and install add-on cards. All serverboard jumpers and connections are described and a layout and quick reference chart are included in this chapter. Remember to close the chassis completely when you have finished working on the serverboard to protect and cool the system sufficiently. # 5-1 Handling the Serverboard Static electrical discharge can damage electronic components. To prevent damage to printed circuit boards, it is important to handle them very carefully (see Chapter 4). Also note that the size and weight of the serverboard can cause it to bend if handled improperly, which may result in damage. To prevent the serverboard from bending, keep one hand under the center of the board to support it when handling. The following measures are generally sufficient to protect your equipment from static discharge. ### **Precautions** - Use a grounded wrist strap designed to prevent static discharge. - Touch a grounded metal object before removing any board from its antistatic bag. - Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts. - When handling chips or modules, avoid touching their pins. - Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use. # Unpacking The serverboard is shipped in antistatic packaging to avoid static damage. When unpacking the board, make sure the person handling it is static protected. # 5-2 Processor and Heatsink Installation When handling the processor package, avoid placing direct pressure on the label area of the fan. #### Notes: - Always connect the power cord last and always remove it before adding, removing or changing any hardware components. Make sure that you install the processor into the CPU socket before you install the CPU heatsink. - If you buy a CPU separately, make sure that you use an Intel-certified multidirectional heatsink only. - Make sure to install the serverboard into the chassis before you install the CPU heatsinks - When receiving a serverboard without a processor pre-installed, make sure that the plastic CPU socket cap is in place and none of the socket pins are bent; otherwise, contact your retailer immediately. - Refer to the Supermicro web site for updates on CPU support. # Installing an LGA 2011 Processor - There are two levers on the LGA2011 socket. First press and release the load lever labeled 'Open 1st'. - Press the second load lever labeled 'Close 1st' to release the load plate from its locked position. - With the lever labeled 'Close 1st' fully retracted, gently push down on the 'Open 1st' lever to open the load plate. Lift the load plate to open it completely. - Using your thumb and the index finger, remove the 'WARNING' plastic cap from the socket. - Use your thumb and index finger to hold the CPU by its edges. Align the CPU keys, which are semicircle cutouts, against the socket keys. - Once they are aligned, carefully lower the CPU straight down into the socket. (Do not drop the CPU on the socket. Do not move the CPU horizontally or vertically and do not rub the CPU against any pins of the socket, which may damage the CPU or the socket.) **Warning:** You can only install the CPU to the socket in one direction. Make sure that the CPU is properly inserted into the socket before closing the load plate. If it doesn't close properly, do not force it as it may damage your CPU. Instead, open the load plate again and double-check that the CPU is aligned properly. - With the CPU in the socket, inspect the four corners of the CPU to make sure that they are flush with the socket. - Close the load plate. Lock the lever labeled 'Close 1st', then lock the lever labeled 'Open 1st'. Use your thumb to gently push the load levers down until the lever locks. # Removing the Heatsink **Warning:** We do not recommend removing the CPU or the heatsink. If you do need to remove the heatsink, please follow the instructions below to prevent damage to the CPU or other components. - 1. Unplug the power cord from the power supply. - Unscrew and remove the heatsink screws in the sequence shown in the picture below. - 3. Hold the heatsink and gently wiggle it to loosen it from the CPU. (Do not use excessive force when doing this!) - 4. Once the heatsink is loosened, remove it from the CPU. - Clean the surface of the CPU and the heatsink to get rid of the old thermal grease. Reapply the proper amount of thermal grease before you re-install the heatsink. Loosen screws in sequence as shown. # 5-3 Connecting Cables Now that the processors are installed, the next step is to connect the cables to the serverboard # **Connecting Data Cables** The cables used to transfer data from the peripheral devices have been carefully routed in preconfigured systems to prevent them from blocking the flow of cooling air that moves through the system from front to back. If you need to disconnect any of these cables, you should take care to reroute them as they were originally after reconnecting them (make sure the red wires connect to the pin 1 locations). If you are configuring the system, keep the airflow in mind when routing the cables. The following data cables (with their connector locations noted) should be connected. See the serverboard layout diagram in this chapter for connector locations. - SAS cables (SAS0 ~ SAS3, SAS4 ~ SAS7) - Control Panel cable (JF1, see next page) # **Connecting Power Cables** The X9DRW-7TPF has a 24-pin primary power supply connector designated "JPW1" for connection to the ATX power supply. Connect the appropriate connector from the power supply to JPW1 to supply power to the serverboard. See the Connector Definitions section in this chapter for power connector pin definitions. In addition, your power supply must be connected to the 8-pin Processor Power connectors at JPW2 and JPW3. # **Connecting the Control Panel** JF1 contains header pins for various front control panel connectors. See Figure 5-1 for the pin locations of the front control panel buttons and LED indicators. Please note that even and odd numbered pins are on opposite sides of each header. All JF1 wires have been bundled into single keyed ribbon cable to simplify their connection. The red wire in the ribbon cable plugs into pin 1 of JF1. Connect the other end of the cable to the Control Panel printed circuit board, located just behind the system status LEDs in the chassis. See the Connector Definitions section in this chapter for details and pin descriptions of JF1. 19 20 Ground 0 NMI x (key) x (key) Power LED 3.3V 0 HDD LED 0 UID Switch/Vcc NIC1 Link LED 0 NIC1 Active LED NIC2 Link LED • NIC2 Active LED 0 Blue: OH/Fan Fail/Power Fail/UID LED Red: (Blue LED Cathode) Power Fail LED 0 3.3V Ground • Reset Button Ground Power Button Figure 5-1. Front Control Panel Header Pins (JF1) # 5-4 I/O Ports The I/O ports are color coded in conformance with the PC 99 specification. See Figure 5-2 below for the colors and locations of the various I/O ports. # 5-5 Installing Memory Note: Check the Supermicro web site for recommended memory modules. ## **CAUTION** Exercise extreme care when installing or removing DIMM modules to prevent any possible damage. # Installing DIMMs - Insert the desired number of DIMMs into the memory slots, starting with slot P1-DIMM1A. For best performance, install memory modules of the same type and same speed in the slots as indicated in the tables below. - Insert each DIMM vertically into its slot. Pay attention to the notch along the bottom of the module to prevent inserting the DIMM module incorrectly (see Figure 5-5). - Gently press down on the DIMM module until it snaps into place in the slot. Repeat for all modules ## **Memory Support** The X9DRW-7TPF supports up to 768 GB registered/unbuffered ECC DDR3-1600/1333/1066/800 MHz SDRAM or 768 GB of LRDIMM (Reduced Load) DDR3-1600/1333/1066/800 MHz memory modules. Figure 5-3. Installing DIMM into Slot To Install: Insert module vertically and press down until it snaps into place. Pay attention to the alignment notch at the bottom. #### To Remove: Use your thumbs to gently push the release tabs near both ends of the module. This should release it from the slot. Top View of DDR3 Slot # Processor & Memory Module Population Configuration For memory to work properly, follow the tables below for memory installation. | Processors and their Corresponding Memory Modules | | | | | | | | | |---|----------------------------|--------|--------|--------|--------|---------|--------|--------| | CPU# | Corresponding DIMM Modules | | | | | | | | | CPU 1 | P1- | | DIMMA1 | DIMMB1 | DIMMC1 | DIMMD1 | DIMMA2 | DIMMB2 | DIMMC2 | DIMMD2 | | CPU2 | P2- | | DIMME1 | DIMMF1 | DIMMG1 | DIMMH1 | DIMME2 | DIMM F2 | DIMMG2 | DIMMH2 | |
Processor | Processor and Memory Module Population for Optimal Performance | | | | | | |-------------------------|--|--|--|--|--|--| | Number of CPUs+DIMMs | CPU and Memory Population Configuration Table (For memory to work properly, follow the instructions below.) | | | | | | | 1 CPU &
2 DIMMs | CPU1
P1-DIMMA1/P1-DIMMB1 | | | | | | | 1 CPU &
4 DIMMs | CPU1
P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1 | | | | | | | 1 CPU &
5~8 DIMMs | CPU1 P1-DIMMA1/P1-DIMMB1, P1-DIMMC1/P1-DIMMD1 + Any memory pairs in P1-DIMMA2/P1-DIMMB2/P1-DIMMC2/P1-DIMMD2 slots | | | | | | | 2 CPUs &
4 DIMMs | CPU1 + CPU2
P1-DIMMA1/P1-DIMMB1, P2-DIMME1/P2-DIMMF1 | | | | | | | 2 CPUs &
6 DIMMs | CPU1 + CPU2
P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1 | | | | | | | 2 CPUs &
8 DIMMs | CPU1 + CPU2
P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-
DIMMG1/P2-DIMMH1 | | | | | | | 2 CPUs &
10~16 DIMMs | CPU1/CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIMMG1/P2-DIMMH1 + Any memory pairs in P1, P2 DIMM slots | | | | | | | 2 CPUs &
16 DIMMs | CPU1/CPU2 P1-DIMMA1/P1-DIMMB1/P1-DIMMC1/P1-DIMMD1, P2-DIMME1/P2-DIMMF1/P2-DIM-MG1/P2-DIMMH1,P1-DIMMA2/P1-DIMMB2/P1-DIMMC2/P1-DIMMD2, P2-DIMME2/P2-DIMMF2/P2-DIMMG2/P2-DIMMH2 | | | | | | # 5-6 Adding PCI Cards ## **PCI Expansion Slots** The X9DRW-7TPF has two proprietary PCI slots. Riser cards installed to the system allow you to add PCI expansion cards (see below). The SC119XTQ-R700WB chassis can support the use of two standard size expansion cards and one low-profile expansion card (with pre-installed riser cards). #### **PCI Card Installation** Before installing a PCI add-on card, make sure you power off the system first. Begin by removing the top chassis cover. Two riser cards should be pre-installed into the system. Remove the screws that secure the riser cards to the rear of the chassis then lift the riser card assembly from the chassis. Insert the PCI card into the riser card slot, pushing down with your thumbs evenly on both sides of the card - note that the add-on card attaches to the riser card with a single screw. After the card has been installed, reinsert the riser card back into the expansion slot on the board, then secure it with the same screws you removed previously. Finish by replacing the chassis cover. | PCI Slot/Card Configurations | | | | | |------------------------------|--|--|--|--| | Riser Card | Expansion Card Supported | | | | | RSC-R1UW-2E16 (left side) | 2x PCI-E x16 cards (Slots 2 and 3 in image below) | | | | | RSC-R1UW-E8R (right side) | 1x low-profile PCI-E x8 card (Slot 1 in image below) | | | | | | PCI Card Locations | | | | | |---|-----------------------------------|---|---------------------------------|--|--| | # | Expansion Card | # | Expansion Card | | | | 1 | Low-profile (2.536"), 6.6" length | 3 | Full-height (4.2"), 6.6" length | | | | 2 | Full-height (4.2"), 10" length | | | | | SAS CTRL # 5-7 Serverboard Details SXBIA LAN CTRL SXB1_2 LAN CTRL ogJPL1 **s**LEM2 SUPER X9DRW-7TPF/iTPF Rev. 1.01 BMC P1-DIMMB1 P1-DIMMB2 P1-DIMMC1 P1-DIMMD1 P1-DIMMD2 SXB1C BAR CODE SFP. MAC CODE IPMI CODE I-SATA5 I-SATA3I-SATA1 I-SATA4 I-SATA2I-SATA0 SAS CODE Intel PCH P2-DIMMF1 四位 Figure 5-4. SUPER X9DRW-7TPF Layout ### Notes: Jumpers not indicated are for test purposes only. CLOSE 1s # X9DRW-7TPF Quick Reference | Jumper | Description | Default Setting | |---------------------------------------|--------------------------|--------------------| | JBT1 | Clear CMOS | See Section 5-9 | | JI ² C1/JI ² C2 | SMB to PCI-E Slots | Open (Disabled) | | JPG1 | VGA Enable/Disable | Pins 1-2 (Enabled) | | JPL1 | LAN1/LAN2 Enable/Disable | Pins 1-2 (Enabled) | | JPS1 | SAS Enable/Disable | Pins 1-2 (Enabled) | | JPTLAN | TLAN1/2 Enable/Disable | Pins 1-2 (Enabled) | | JWD1 | Watch Dog | Pins 1-2 (Reset) | | Connector | Description | |--------------------|--| | COM1/COM2 | COM1/COM2 Serial Port/Header | | FAN 1~8 | CPU//System Fan Headers (Fans 7 & 8: CPU Fans) | | IPMB | 4-pin External BMC I ² C Header (for IPMI Card) | | IPMI LAN | Dedicated IPMI LAN | | I-SATA 0~5 | Intel SB SATA Connectors 0~5 | | JF1 | Control Panel Header | | JL1 | Chassis Intrusion | | JOH1 | Overheat/Fan Fail LED | | JPI ² C | Power Supply SMBbus I ² C Header | | JPTM1 | Trusted Platform Support Header | | JPW1 | ATX 24-Pin Power Connector | | JPW2/JPW3 | 12V 8-Pin Power Connectors | | JWF1 | SATA DOM (Disk On Module) Power Header | | LAN1/2 | Gigabit Ethernet Ports 1/2 | | SAS0~3, 4~7 | SAS Ports | | SAS BBU | SAS Battery Backup Unit (p/n: BTR-0018L-0000-LSI) | | TLAN1/TLAN2 | 10 Gb Ethernet Ports (X8DTU-6TF+ only) | | T-SGPIO 1/2 | Serial_Link General Purpose I/O Headers | | USB 0/1 | Back Panel USB 0/1 Ports | | USB4/5, 6, 7 | Front Panel Accessible USB Headers (USB6: Type A port) | | UID | UID (Unit Identifier) Button | | UIOP | Universal I/O Add-on Card Power Connection | | LED | Description | |------|-------------------| | LED1 | Power LED | | LED2 | UID LED | | LED3 | BMC Heartbeat LED | | LED4 | SAS Activity LED | | LED5 | SAS Heartbeat LED | | LED6 | SAS Error LED | | LED7 | UID LED | # 5-8 Connector Definitions ### **Power Connectors** A 24-pin main power supply connector(JPW1), and two 8-pin power connectors (JPW2/JPW3) are located on the motherboard. These power connectors meet the SSI EPS 12V specification. These power connectors must also be connected to your power supply. See the table on the right for pin definitions. Warning: To prevent damage to the power supply or motherboard, please use a power supply that contains a 24-pin and two 8-pin and one 4-pin power connectors. Be sure to connect these power supply connectors to the 24-pin power connector (JPW1), and the 8-pin power connectors (JPW2/JPW3) on the motherboard ### **NMI Button** The non-maskable interrupt button header is located on pins 19 and 20 of JF1. Refer to the table on the right for pin definitions. ### **Power LED** The Power LED connection is located on pins 15 and 16 of JF1. Refer to the table on the right for pin definitions. | A | ATX Power 24-pin Connector
Pin Definitions | | | | | |------|---|---|-----|------------|--| | Pin# | Definition | Р | in# | Definition | | | 13 | +3.3V | | 1 | +3.3V | | | 14 | -12V | | 2 | +3.3V | | | 15 | COM | | 3 | COM | | | 16 | PS_ON | | 4 | +5V | | | 17 | COM | | 5 | COM | | | 18 | COM | | 6 | +5V | | | 19 | COM | | 7 | COM | | | 20 | Res (NC) | | 8 | PWR_OK | | | 21 | +5V | | 9 | 5VSB | | | 22 | +5V | | 10 | +12V | | | 23 | +5V | | 11 | +12V | | | 24 | COM | | 12 | +3.3V | | | 12V 8-pin PWR
Connector
Pin Definitions | | | | |---|------------|--|--| | Pins | Definition | | | | 1~ 4 | Ground | | | | 5 ~8 +12V | | | | | (Required) | | | | NMI Button Pin Definitions (JF1) Pin# Definition 19 Control 20 Ground | Power LED
Pin Definitions (JF1) | | | | |------------------------------------|------------|--|--| | Pin# | Definition | | | | 15 | 3.3V | | | | 16 | PWR LED | | | ### **HDD LED** The HDD LED connection is located on pins 13 and 14 of JF1. Attach a cable here to indicate HDD activity. See the table on the right for pin definitions | HDD LED
Pin Definitions (JF1) | | | | |----------------------------------|----------------------------|--|--| | Pin# | Definition | | | | 13 | ID_UID_
SW_3.3V/3.3V SB | | | | 14 | HDD Active | | | # Overheat (OH)/Fan Fail/PWR Fail/ UID LED Connect an LED cable to pins 7 and 8 of Front Control Panel to use the Overheat/Fan Fail/Power Fail and UID LED connections. The Red LED on pin 7 provides warnings of overheat, fan failure or power failure. The Blue LED on pin 8 works as the front panel UID LED indicator. The Red LED takes precedence over the Blue LED by default. Refer to the table on the right for pin definitions. | OH/Fan Fail/ PWR Fail/Blue_UID
LED Pin Definitions (JF1) | | | | |---|---|--|--| | Pin# Definition | | | | | 7 | Red_LED-Cathode/OH/Fan Fail/
Power Fail5.5V.SB | | | | 8 | Blue_UID LED | | | | | Fail/PWR Fail
tus (Red LED) | |----------|--------------------------------| | State | Definition | | Off | Normal | | On | Overheat | | Flashing | Fan Fail | ## NIC1/NIC2 LED Indicators The NIC (Network Interface Controller) LED connections for GLAN port 1 are located on pins 11 and 12 of JF1, and the LED connection for GLAN Port 2 are on Pins 9 and 10. Attach the NIC LED cables here to display network activity. Refer to the table on the right for pin definitions. Note: The NIC LED connections for TLAN Ports 1/2 are located on JF2 and LEDB7. See Page 2-30 for details. ### **Power Fail LED** The Power Fail LED connection is located on pins 5 and 6 of JF1. Refer to the table on the right for pin definitions ### **Reset Button** The Reset Button connection is located on pins 3 and 4 of JF1. Attach it to a hardware reset switch on the computer case. Refer to the table on the right for pin definitions. ## **Power Button** The Power Button connection is located on pins 1 and 2 of JF1. Momentarily contacting both pins will power on/off the system. This button can also be configured to function as a suspend button (with a setting in the BIOS - See Chapter 5). To turn off the power when the system is in suspend mode, press the button for 4 seconds or longer. Refer to the table on the right for pin definitions. ## **SAS BBU Connector** Two SAS Battery Backup Unit (BBU) connectors are located in the front of the chassis. In the event of a power outage, the BBU units will provide backup power for SAS
connection use. | PWR Fail LED
Pin Definitions (JF1) | | |---------------------------------------|-----------------| | Pin# | Definition | | 5 | 3.3V | | 6 | PWR Supply Fail | | Reset Button
Pin Definitions (JF1) | | |---------------------------------------|------------| | Pin# | Definition | | 3 | Reset | | 4 | Ground | | Power Button
Pin Definitions (JF1) | | |---------------------------------------|------------| | Pin# | Definition | | 1 | Signal | | 2 | Ground | ### Serial Ports Two COM connections (COM1 & COM2) are located on the motherboard. COM1 is located on the Backplane I/O panel. COM2, located next to the JTPM1/Port 80 header, is used to provide front access support. See the table on the right for pin definitions. | Serial COM) Ports
Pin Definitions | | | | |--------------------------------------|------------|------|------------| | Pin # | Definition | Pin# | Definition | | 1 | DCD | 6 | DSR | | 2 | RXD | 7 | RTS | | 3 | TXD | 8 | CTS | | 4 | DTR | 9 | RI | | 5 | Ground | 10 | N/A | # **Universal Serial Bus (USB)** Two Universal Serial Bus ports (USB 0/1) are located on the I/O back panel. In addition, a USB header, located close to the I-SATA ports, is used to provide front-accessible USB connections (USB 2/3). A Type A connector (USB 6) also provides front panel USB support. (Cables are not included). See the tables on the right for pin definitions. | (| Backplane USB
(USB 0/1)
Pin Definitions | | | |------|---|--|--| | Pin# | Definition | | | | 1 | +5V | | | | 2 | PO- | | | | 3 | PO+ | | | | 4 | Ground | | | | 5 | NA | | | | FP USB (2/3, 6)
Pin Definitions | | | | |---|--------|---|--------| | USB 2, 6 USB 3
Pin # Definition Pin # Definition | | | | | 1 | +5V | 1 | +5V | | 2 | PO- | 2 | PO- | | 3 | PO+ | 3 | PO+ | | 4 | Ground | 4 | Ground | | 5 | NC | 5 | Key | | (NC= No connection) | | | | ### Unit Identifier Switch A Unit Identifier (UID) Switch and two LED Indicators are located on the motherboard. The UID Switch is located next to the TLAN Port 2 on the backplane. The Rear UID LED (LE2) is located next to the UID Switch. The Front Panel UID LFD is located at Pins 7/8 of the Front Control Panel at JF1. Connect a cable to Pin 8 on JE1 for Front Panel UID LED indication. When you press the UID switch, both Rear UID LFD and Front Panel UID LED Indicators will be turned on. Press the UID switch again to turn off both LED Indicators. These UID Indicators provide easy identification of a system unit that may be in need of service | UID Switch | | | |------------|------------|--| | Pin# | Definition | | | 1 | Ground | | | 2 | Ground | | | 3 | Button In | | | 4 | Ground | | | UID LED (LE2)
Status | | | |-------------------------|-------------|-----------------| | Color/State | e OS Status | | | Blue: On | Windows OS | Unit Identified | | Blue:
Blinking | Linux OS | Unit Identified | **Note:** UID can also be triggered via IPMI on the serverboard. For more information on IPMI, please refer to the IPMI User's Guide posted on our Website http://www.supermicro.com. ### Fan Headers This motherboard has six system/CPU fan headers (Fan 1~Fan 6) on the motherboard. All these 4-pin fans headers are backward compatible with the traditional 3-pin fans. However, fan speed control is available for 4-pin fans only. The fan speeds are controlled by firmware thermal management via IPMI interface. See the table on the right for pin definitions. | Fan Header
Pin Definitions | | |-------------------------------|-----------------------------------| | Pin# | Definition | | 1 | Ground | | 2 | +12V | | 3 | Tachometer | | 4 | Pulse Width Modu-
lation (PWM) | ### **Chassis Intrusion** A Chassis Intrusion header is located at JL1 on the motherboard. Attach an appropriate cable from the chassis to inform you of a chassis intrusion when the chassis is opened. | Chassis Intrusion Pin Definitions | | | |-----------------------------------|-----------------|--| | Pin# | Definition | | | 1 | Intrusion Input | | | 2 | Ground | | # ATX PS/2 Keyboard and PS/2 Mouse Ports The ATX PS/2 keyboard and the PS/2 mouse ports are located beside the USB ports. See the table on the right for pin definitions. | PS/2 Keyboard and
Mouse Ports
Pin Definitions | | | |---|------------|--| | Pin# | Definition | | | 1 | Data | | | 2 | NC | | | 3 | Ground | | | 4 | VCC | | | 5 | Clock | | | 6 | NC | | ### Overheat/Fan Fail LED The JOH1 header is used to connect an LED indicator to provide warnings of chassis overheating and fan failure. This LED will blink when a fan failure occurs. Refer to the tables on right for pin definitions. | OH/Fan Fail LED
Status | | | | |-------------------------------|---------------|----------|--| | State | State Message | | | | Solid | Overheat | | | | Blinking | | Fan Fail | | | OH/Fan LED
Pin Definitions | | | | | Pin# | Definition | | | | | | | | | 1 | 5v | DC | | # **Standby Power Header** The Standby Power header is located at JSTBY1 on the motherboard. See the table on the right for pin definitions. (You must also have a cable to use this feature.) | Standby PWR
Pin Definitions | | | |--------------------------------|-------------|--| | Pin# | Definition | | | 1 | +5V Standby | | | 2 | Ground | | | 3 Wake-up | | | ### T-SGPIO/S-SGPIO Headers Three Serial-Link General Purpose Input/Output headers are located at T-SGPIO 1/2 and S-SGPIO 1 on the motherboard. T-SPGIO 1/2 support I-SATA 0~5, and S-SGPIO 1 supports S-SATA 0-3 connections. See the table on the right for pin definitions. | T-SGPIO/S-SGPIO
Pin Definitions | | | | | |------------------------------------|------------|-----|------------|--| | Pin# | Definition | Pin | Definition | | | 1 | NC | 2 | NC | | | 3 | Ground | 4 | Data | | | 5 | Load | 6 | Ground | | | 7 | Clock | 8 | NC | | Note: NC= No Connection # Power SMB (I2C) Connector Power System Management Bus (I²C) Connector (JPI²C1) monitors power supply, fan and system temperatures. See the table on the right for pin definitions | PWR SMB
Pin Definitions | | | | |----------------------------|------------|--|--| | Pin# | Definition | | | | 1 | Clock | | | | 2 | Data | | | | 3 PWR Fail | | | | | 4 | Ground | | | | 5 | +3.3V | | | ### **IPMB** A System Management Bus header for IPMI 2.0 is located at JIPMB1. Connect the appropriate cable here to use the IPMB I²C connection on your system. | IPMB Header
Pin Definitions | | | |--------------------------------|---------------|--| | Pin# | Definition | | | 1 | Data | | | 2 Ground | | | | 3 | Clock | | | 4 | No Connection | | ### **Ethernet Ports** Two Gigabit Ethernet ports (LAN1/2) and two 10G LAN ports (TLAN1, TLAN2) are located on the I/O backplane to provide internet connections. TLAN1 & TLAN2 also support 10-Gigabit small form-factor pluggable (SFP) transceivers optimized for onboard telecommunication and data communications. In addition to LAN/ TLAN ports, an IPMI_Dedicated LAN, located above USB 0/1 ports on the backplane, provides KVM support for IPMI 2.0. (Note: Please refer to the LED Indicator Section for LAN LED information.) | GLAN Ports (LAN 1/2)
Pin Definition | | | | | |--|------------|----|-----------------------------------|--| | Pin# | Definition | | | | | 1 | P2V5SB | 10 | SGND | | | 2 | TD0+ | 11 | Act LED | | | 3 | TD0- | 12 | P3V3SB | | | 4 | TD1+ | 13 | Link 100 LED (Yellow, +3V3SB) | | | 5 | TD1- | 14 | Link 1000 LED
(Yellow, +3V3SB) | | | 6 | TD2+ | 15 | Ground | | | 7 | TD2- | 16 | Ground | | | 8 | TD3+ | 17 | Ground | | | 9 | TD3- | 18 | Ground | | (NC: No Connection) ## T-SGPIO 1/2 Headers Two SGPIO (Serial-Link General Purpose Input/Output) headers are located at J17, J18 on the serverboard. These headers support a Serial Link interface for onboard SATA connections. See the table on the right for pin definitions. | T-SGPIO
Pin Definitions | | | | | |----------------------------|------------|-----|------------|--| | Pin# | Definition | Pin | Definition | | | 1 | NC | 2 | NC | | | 3 | Ground | 4 | Data | | | 5 | Load | 6 | Ground | | | 7 | Clock | 8 | NC | | Note: NC indicates no connection. ### **DOM Power Connector** A power connector for SATA DOM (Disk_On_Module) devices is located at JSD1. Connect an appropriate cable here to provide power support for your SATA DOM devices. | DOM PWR
Pin Definitions | | | |----------------------------|------------|--| | Pin# | Definition | | | 1 | +5V | | | 2 | Ground | | | 3 | Ground | | ### **TPM Header/Port 80** A Trusted Platform Module/Port 80 header is located at JTPM1 to provide TPM support and Port 80 connection. Use this header to enhance system performance and data security. See the table on the right for pin definitions. | TPM/Port 80 Header
Pin Definitions | | | | | |---------------------------------------|------------|-------|-------------|--| | Pin# | Definition | Pin # | Definition | | | 1 | LCLK | 2 | GND | | | 3 | LFRAME# | 4 | <(KEY)> | | | 5 | LRESET# | 6 | +5V (X) | | | 7 | LAD 3 | 8 | LAD 2 | | | 9 | +3.3V | 10 | LAD1 | | | 11 | LAD0 | 12 | GND | | | 13 | SMB_CLK4 | 14 | SMB_DAT4 | | | 15 | +3V_DUAL | 16 | SERIRQ | | | 17 | GND | 18 | CLKRUN# (X) | | | 19 | LPCPD# | 20 | LDRQ# (X) | | # **RAIDKey Header** A RAIDKey header (JRK1) provides RAID function support to enhance system performance. | RAIDKey
Pin Definitions | | | |----------------------------|------------|--| | Pin# | Definition | | | 1 | Ground | | | 2 | Signal | | | 3 | Ground | | ## Front Panel LEDs for TLAN1/TLAN2 The Front Panel LED indicator for TLAN port 1 is located on pins 3 and 4 of JF2, and for TLAN port 2 is on Pins 1 and 2 of JF2. Attach a NIC LED cable here to display network activities and connection speeds. Refer to the table on the right for pin definitions. # Activity/Link LEDs for TLAN1/TLAN2 LEDB7
indicates activity and connection speeds for TLAN Ports 1/2. Refer to the table on the right for pin definitions. | Front Panel LEDs for TLAN 1/TLAN 2
Pin Definitions (JF2) | | | | | | |---|-------------------|-----|------------|--|--| | Pin# | Definition | Pin | Definition | | | | 1 | TLAN2
Activity | 2 | TLAN2 Link | | | | 3 | TLAN1
Activity | 4 | TLAN1 Link | | | | Act/Link LED for TLAN 1/TLAN 2
Pin Definitions (LEDB7) | | | | |---|-----------|-----|-----------| | Pin# LAN#3 Speed Pin# LAN#4 Speed | | | | | 1/2 | Amber: 1G | 3/4 | Amber: 1G | | 1/2 Green: 10G 3/4 Green: 10G | | | | # 5-9 Jumper Settings ### **Explanation of Jumpers** To modify the operation of the serverboard, jumpers can be used to choose between optional settings. Jumpers create shorts between two pins to change the function of the connector. Pin 1 is identified with a square solder pad on the printed circuit board. See the diagram at right for an example of jumping pins 1 and 2. Refer to the serverboard layout page for jumper locations. **Note:** On two-pin jumpers, "Closed" means the jumper is on and "Open" means the jumper is off the pins. #### **CMOS Clear** JBT1 is used to clear CMOS and will also clear any passwords. Instead of pins, this jumper consists of contact pads to prevent accidentally clearing the contents of CMOS ## To clear CMOS - 1. First power down the system and unplug the power cord(s). - With the power disconnected, short the CMOS pads with a metal object such as a small screwdriver. - Remove the screwdriver (or shorting device). - 4. Reconnect the power cord(s) and power on the system. Note: Do not use the PW ON connector to clear CMOS. # VGA Enable/Disable Jumper JPG1 allows the user to enable the onboard VGA connector. The default setting is 1-2 to enable the connection. See the table on the right for jumper settings. | VGA Enable
Jumper Settings | | |-------------------------------|-------------------| | Jumper Setting | Definition | | Pins 1-2 | Enabled (Default) | | Pins 2-3 Disabled | | ## GLAN/10G_LAN Enable/Disable Use JPL1 to enable/disable LAN Ports 1/2, and use JPL2 for TLAN Ports 1/2. See the table on the right for jumper settings. The default setting is Enabled. | LAN1/2, TLAN1/2 Enable
Jumper Settings | | |---|-------------------| | Jumper Setting Definition | | | Pins 1-2 | Enabled (default) | | Pins 2-3 | Disabled | # Watch Dog Enable/Disable Watch Dog (JWD1) is a system monitor that can reboot the system when a software application hangs. Close Pins 1-2 to reset the system if an application hangs. Close Pins 2-3 to generate a non-maskable interrupt signal for the application that hangs. See the table on the right for jumper settings. Watch Dog must also be enabled in the BIOS. | Watch Dog
Jumper Settings | | |------------------------------|-----------------| | Jumper Setting Definition | | | Pins 1-2 | Reset (default) | | Pins 2-3 | NMI | | Open | Disabled | ### BMC Enable/Disable Jumper JPB1 allows you to enable the embedded the Nuvoton BMC (Baseboard Management) Controller to provide IPMI 2.0/KVM support on the motherboard. See the table on the right for jumper settings. | BMC Enable
Jumper Settings | | | |-------------------------------|----------------------|--| | Jumper Setting Definition | | | | Pins 1-2 | BMC Enable (Default) | | | Pins 2-3 | Normal | | ### SAS Enable/Disable Use Jumper JPS1 to enable or disable onboard SAS connections. The default setting is on Pins 1/2 to enable onboard SAS support. See the table on the right for jumper settings. | SAS Enable
Jumper Settings | | |-------------------------------|-------------------| | Jumper Setting | Definition | | Pins 1/2 | Enabled (Default) | | Pins 2/3 | Disabled | ### **BIOS Write-Protect** Close Pins 1/2 of Jumper JWP1 to support BIOS Write-Protect to prevent BIOS Setup utility settings from being illegally altered. The default setting is to close 2-3 for normal operation. See the table on the right for jumper settings. | BIOS Write Protect
Jumper Settings | | |---------------------------------------|------------------| | Jumper Setting | Definition | | 1-2 | Enabled | | 2-3 | Normal (Default) | # Flash Descriptor Security Overwrite Close Pins 1/2 of Jumper JPME2 to support Flash Descriptor Security Overwrite support which will allow the user to overwrite flash descriptor security settings. The default setting is to close 2-3 for normal operation. See the table on the right for jumper settings. | Flash Descriptor Security Overwrite
Jumper Settings | | |--|------------------| | Jumper Setting | Definition | | 1-2 | Enabled | | 2-3 | Normal (Default) | ## I2C Bus to PCI-Exp. Slots Jumpers JI²C1 and JI²C2 allow you to connect the System Management Bus (I²C) to PCI-Express slots. The default setting is Open to disable the connection. See the table on the right for jumper settings. | I ² C to PCI-Exp
Jumper Settings | | |--|--------------------| | Jumper Setting | Definition | | Closed | Enabled | | Open | Disabled (Default) | ## I2C Bus to VRMs Use Jumpers JP6 and JP7 to connect the System Management Bus (I²C) to VRMs. The default setting is Off to disable the connection. See the table on the right for jumper settings. | I ² C to VRMs
Jumper Settings | | |---|--------------------| | Jumper Setting | Definition | | On | Enabled | | Off | Disabled (Default) | ### Manufacture Mode Jumper JPME1 allows the user to flash the system firmware from a host server to modify system settings. Close this jumper to bypass SPI flash security, and force ME into Recovery mode in order to use Recovery jumpers. See the table on the right for jumper settings. | ME Mode Select
Jumper Settings | | |-----------------------------------|------------------| | Jumper Set | ting Definition | | Pins 1-2 | Manufacture Mode | | Pins 2-3 | Normal (Default) | # **ME Recovery** Close Jumper JPBR1 to use ME Firmware Recovery mode, which will limit system activities to support essential functions only. There will be no power use restrictions. In the single operational mode, online upgrade will be available via the Recovery mode. See the table on the right for jumper settings. | ME Recovery
Jumper Settings | | |--------------------------------|------------------| | Jumper Setting Definition | | | On | ME Recovery | | Off | Normal (Default) | # 5-10 Onboard Indicators ### LAN LEDs The Ethernet ports (located beside the VGA port) have two LEDs. On each Gigabit LAN port, one LED indicates activity when blinking while the other LED may be green, amber or off to indicate the speed of the connection. See the table on the right for the functions associated with the connection speed LED. **Note**: For TLAN 1/2 LED indicators, please refer to JF2 and LEB7 on page 5-21. | LAN LED
Connection Speed Indicator | | |---------------------------------------|---| | LED Color Definition | | | Off | No connection or 10 Mb/s | | Green | 100 Mb/s | | Amber | 1 Gb/s | | Green | 1 Gbps (when LAN 1~4 are all used for 1G connections. | #### IPMI Dedicated LAN LEDs In addition to the Gigabit Ethernet ports, an IPMI Dedicated LAN is also located above the Backplane USB ports 0/1 on the motherboard. The amber LED on the right indicates activity, while the green LED on the left indicates the speed of the connection. See the tables at right for more information. ### **Onboard Power LED** An Onboard Power LED is located at LE1 on the motherboard. When this LED is on, the system is on. Be sure to turn off the system and unplug the power cord before removing or installing components. See the tables at right for more information. | Onboard PWR LED Indicator (LE1) | | | |---------------------------------|--------------------------------------|--| | LED Color | Status | | | Off | System Off (PWR cable not connected) | | | Green | System On | | | Green:
Flashing
Quickly | ACPI S1 State | | | Green:
Flashing
Slowly | ACPI S3 (STR) State | | # Rear UID LED The rear UID LED is located at LE2 on the rear of the motherboard. This LED is used in conjunction with the rear UID switch to provide easy identification of a system that might be in need of service. Refer to UID Switch on Page 3-15 for more information. | UID LED
Status | | | | |-----------------------|------------|-----------------|--| | Color/State OS Status | | | | | Blue: On | Windows OS | Unit Identified | | | Blue:
Blinking | Linux OS | Unit Identified | | #### **BMC Heartheat LFD** A BMC Heartbeat LED is located at LEM2 on the motherboard. When LEM2 is blinking, BMC functions normally. See the table at right for more information. | BMC Heartbeat LED
Status | | | |-----------------------------|-------------|--| | Color/State | Definition | | | Green:
Blinking | BMC: Normal | | ## 5-11 SAS/SATA Port Connections #### Serial ATA Ports There are two SATA 3.0 Ports (I-SATA0/1) and eight SATA 2.0 Ports (I-SATA 2-5, S-SATA 0-3) on the motherboard. These ports provide serial-link signal connections, which are faster than the connections of Parallel ATA. In addition, I-SATA5 also functions as a wireless SATA DOM that can be used to provide power supply to onboard SATA DOM devices. See the table on the right for pin definitions. | SATA2.0/SATA3.0
Pin Definitions | | | |------------------------------------|------------|--| | Pin# | Definition | | | 1 | Ground | | | 2 | TX_P | | | 3 | TX_N | | | 4 | Ground | | | 5 | RX_N | | | 6 | RX_P | | | 7 | Ground | | #### **SAS Ports** Eight Serial_Attached_SCSI Ports (SAS 0-3, 4-7) located on the X9DRW-7TPF series motherboard to provide serial link connections. These ports are supported by the Intel LSI 2208
Controller. See the table on the right for pin definitions. | SAS Connections
Pin Definitions | | | |------------------------------------|------------|--| | Pin# | Definition | | | 1 | Ground | | | 2 | TX_P | | | 3 | TX_N | | | 4 | Ground | | | 5 | RX_N | | | 6 | RX_P | | | 7 | Ground | | # 5-12 Installing Software After the hardware has been installed, you should first install the operating system and then the drivers. The necessary drivers are all included on the Supermicro CDs that came packaged with your serverboard. **Driver/Tool Installation Display Screen** **Note:** Click the icons showing a hand writing on paper to view the readme files for each item. Click the computer icons to the right of these items to install each item (from top to the bottom) one at a time. **After installing each item, you must re-boot the system before moving on to the next item on the list.** The bottom icon with a CD on it allows you to view the entire contents of the CD. ## SuperDoctor III The SuperDoctor® III program is a Web base management tool that supports remote management capability. It includes Remote and Local Management tools. The local management is called SD III Client. The SuperDoctor III program allows you to monitor the environment and operations of your system. SuperDoctor III displays crucial system information such as CPU temperature, system voltages and fan status. See the figures below for examples of the SuperDoctor III interface Note: The default User Name and Password for SuperDoctor III is ADMIN / ADMIN. **Note:** When SuperDoctor is first installed, it adopts the temperature threshold settings that have been set in BIOS. Any subsequent changes to these thresholds must be made within SuperDoctor, as the SuperDoctor settings override the BIOS settings. To set the BIOS temperature threshold settings again, you would first need to uninstall SuperDoctor. Supero Doctor III Interface Display Screen (Health Information) ## Supero Doctor III Interface Display Screen (Remote Control) Note: The SuperDoctor III program and User's Manual can be downloaded from the Supermicro web site at http://www.supermicro.com/products/accessories/software/ SuperDoctorIII.cfm. For Linux, we recommend using SuperDoctor II. # 5-13 Onboard Battery Care must be taken to assure that the chassis cover is in place when the 1027R-72BRFTP is operating to assure proper cooling. Out of warranty damage to the system can occur if this practice is not strictly followed. Figure 5-5. Installing the Onboard Battery Please handle used batteries carefully. Do not damage the battery in any way; a damaged battery may release hazardous materials into the environment. Do not discard a used battery in the garbage or a public landfill. Please comply with the regulations set up by your local hazardous waste management agency to dispose of your used battery properly. # Notes # **Chapter 6** # **Advanced Chassis Setup** This chapter covers the steps required to install components and perform maintenance on the SC119XTQ chassis. For component installation, follow the steps in the order given to eliminate the most common problems encountered. If some steps are unnecessary, skip ahead to the next step. **Tools Required:** The only tool you will need to install components and perform maintenance is a Philips screwdriver. ## 6-1 Static-Sensitive Devices Electrostatic Discharge (ESD) can damage electronic components. To prevent damage to any printed circuit boards (PCBs), it is important to handle them very carefully. The following measures are generally sufficient to protect your equipment from ESD damage. #### **Precautions** - Use a grounded wrist strap designed to prevent static discharge. - Touch a grounded metal object before removing any board from its antistatic bag. - Handle a board by its edges only; do not touch its components, peripheral chips, memory modules or gold contacts. - When handling chips or modules, avoid touching their pins. - Put the serverboard, add-on cards and peripherals back into their antistatic bags when not in use. - For grounding purposes, make sure your computer chassis provides excellent conductivity between the power supply, the case, the mounting fasteners and the serverboard. Figure 6-1. Chassis: Front and Rear Views Power Supplies Dedicated IPMI LAN Port USB Ports PCI Expansion Slots (w/riser card) Mouse/Keyboard Ports COM Port VGA Ports 10Gb/s Ports* # 6-2 Control Panel The control panel (located on the front of the chassis) must be connected to the JF1 connector on the serverboard to provide you with system status indications. These wires have been bundled together as a ribbon cable to simplify the connection. Connect the cable from JF1 on the serverboard to the appropriate header on the Control Panel PCB (printed circuit board). Make sure the red wire plugs into pin 1 on both connectors. Pull all excess cabling out of the airflow path. The control panel LEDs inform you of system status. See "Chapter 3: System Interface" for details on the LEDs and the control panel buttons. Details on JF1 can be found in "Chapter 5: Advanced Serverboard Setup." # 6-3 System Fans The 1027R-72BRFTP. contains six counter-rotating fans. Each fan unit is actually made up of two fans joined back-to-back, which rotate in opposite directions. This counter-rotating action generates exceptional airflow and works to dampen vibration levels. # System Fan Failure Fan speed is controlled by system temperature via a BIOS setting (Fan Speed Control Modes). If a fan fails, the remaining fan will ramp up to full speed and the overheat/fan fail LED on the control panel will turn on. Replace any failed fan at your earliest convenience with the same type and model (the system can continue to run with a failed fan). Remove the top chassis cover while the system is still running to determine which of the fans has failed. Then power down the system before replacing a fan. Removing the power cord(s) is also recommended as a safety precaution. #### Adding a System Fan to Open Fan Housing - 1. Turn off the power to the system and unplug the AC power cords. - 2. Remove the dummy fan from the fan tray. - Place the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans. - 4. Connect the fan wires to the fan headers on the serverboard. - 5. Power up the system and check that the fan is working properly before replacing the chassis cover. #### Replacing System Fans - 1. After determining which fan has failed, turn off the power to the system. - 2. Unplug the fan wiring from the serverboard and remove the failed fan. - Place the new fan into the vacant space in the housing while making sure the arrows on the top of the fan (indicating air direction) point in the same direction as the arrows on the other fans - Reconnect the fan wiring to the exact same chassis fan header as the previous fan used. - Power up the system and check that the fan is working properly before replacing the chassis cover. Figure 6-2. System Fans ## Air Shroud Air shrouds concentrate airflow to maximize fan efficiency. The SC119 chassis air shroud does not require screws to set up. ## Air Shroud Installation - 1. Disconnect the chassis from any power souce. - 2. Lower the air baffle (MCP-310-19013-0B) into place in between the third and fourth system fans, seperating the CPU and memory. - 3. Align the notch on the air shroud with the screw on the side of the fan tray. - Lower the air shroud into position, sliding the notch over the screw on the side of the fan tray. Figure 6-3. Air Baffle Installation Figure 6-4. Air Shroud Installation # Accessing the Drive Bays <u>Hard Drives</u>: Because of their hotswap capability, you do not need to access the inside of the chassis or power down the system to install or replace the hard drives. Proceed to the next section for instructions. <u>DVD-ROM Drive</u>: For installing/removing a DVD-ROM drive, you will need to gain access to the inside of the server by removing the top cover of the chassis. Proceed to the "DVD-ROM Drive Installation" section later in this chapter for instructions. Note: Only a "slim" DVD-ROM drive will fit into the 1027R-72BRFTP **Warning!** Enterprise level hard disk drives are recommended for use in Supermicro chassis and servers. For information on recommended HDDs, visit the Supermicro Web site at http://www.supermicro.com/products/nfo/storage.cfm #### Hard Drive Installation The SC119 chassis accepts eight hot-swappable 2.5" hard drives. The hard drives are mounted in drive carriers to simplify their installation and removal from the chassis. System power may remain on when removing carriers with drives installed. These carriers also help promote proper airflow for the drive bays. For this reason, even empty carriers without drives installed must remain in the chassis. #### Removing Hard Drive Carrier from the Chassis - Press the release button on the drive carrier. This extends the drive carrier handle. - 2. Use the handle to pull the drive out of the chassis. Figure 6-5. Mounting a Drive in a Carrier Use caution when working around the hard drive backplane. Do not touch the backplane with any metal objects and make sure no ribbon cables touch the backplane or obstruct the holes, which aid in proper airflow. <u>Important:</u> Regardless of how many hard drives are installed, all drive carriers must remain in the drive bays to maintain proper airflow. #### Installing a Hard Drive into a Drive Carrier - Remove the dummy drive, which comes pre-installed in the drive carrier, by removing the screws securing the dummy drive to the carrier. Note that these screws cannot be reused on the actual 2.5" hard drive. - Insert a drive into the carrier with the PCB side facing
down and the connector end toward the rear of the carrier. - 3. Align the drive in the carrier so that the screw holes of both line up. Note that there are holes in the carrier marked "SAS" to aid in correct installation. - 4. Secure the drive to the carrier with four M3 screws as illustrated below. - 5. Insert the drive carrier into its bay, keeping the carrier oriented so that the hard drive is on the top of the carrier and the release button is on the right side. When the carrier reaches the rear of the bay, the release handle will retract. - 6. Push the handle in until it clicks into its locked position Figure 6-6. Removing a Drive from the Server # **Hard Drive Backplane** The hard drives plug into a backplane that provides power and drive ID. A RAID controller can be used with the backplane to provide data security. The operating system you use must have RAID support to enable the hot-swap capability of the drives. The backplane is already preconfigured, so there are no jumpers or switches present on it. # 6-4 Power Supply The SuperServer 1027R-72BRFTP has a 700 watt redundant power supply (PWS-703P-1R) consisting of two power modules. The power supply has an auto-switching capability, which enables the it to automatically sense and operate at a 100V-240V input voltage. # Battery Backup Power (BBP™) Feature The SuperServer 1027R-72BRFTP features two redundant Battery Backup Power modules. In the event that power to the SuperServer 1027R-72BRFTP is interrupted, the BBP feature will provide power to the unit. Each BBP can provide 200 watts (400 watts total) for five minutes, 100 watts (200 watts total) for 15 minutes or six seconds of 350 watt (600 watts total) surge. The battery consumes 20 watts while charging and 2 watts while idle. The redundant battery modules are located in the front of the chassis. The BBP modules have a hot-swap capability which allow them to be replaced without powering down the system. However, when replacing BBP modules, the IPMI needs to be reset. Please see the IPMI User Guide for more information. # **Power Supply Failure** If either of the two power supply modules fail, the other module will take the full load and allow the system to continue operation without interruption. The PWR Fail LED will illuminate and remain on until the failed unit has been replaced. Replacement units can be ordered directly from Supermicro. The power supplies have a hot-swap capability, meaning you can replace the failed unit without powering down the system. If both power supply modules fail, the BBP modules will take over the full load. Both power supplies can be swapped out at this time. IPMI also offers the option of setting the system to gracefully shutdown to avoid loss of data due to sudden power loss. ## Removing the Power Supply - 1. First unplug the AC power cord from the failed power supply module. - 2. Depress the locking tab on the power supply module. - 3. Use the handle to pull it straight out with the rounded handle. ## Installing a New Power Supply - 1. Replace the failed hot-swap unit with another identical power supply unit. - 2. Push the new power supply unit into the power bay until you hear a click. - 3. Secure the locking tab on the unit. - 4. Finish by plugging the AC power cord back into the unit. Figure 6-7. Removing/Replacing the Power Supply # Notes # Chapter 7 ## **BIOS** ## 7-1 Introduction This chapter describes the AMI BIOS Setup utility for the X9DRW-7TPF/ITPF. It also provides the instructions on how to navigate the AMI BIOS Setup utility screens. The AMI ROM BIOS is stored in a Flash EEPROM and can be easily updated. # Starting BIOS Setup Utility To enter the AMI BIOS Setup utility screens, press the key while the system is booting up. Note: In most cases, the key is used to invoke the AMI BIOS setup screen. There are a few cases when other keys are used, such as <F3>, <F4>. etc. Each main BIOS menu option is described in this manual. The Main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. Grayed-out options cannot be configured. Options in blue can be configured by the user. The right frame displays the key legend. Above the key legend is an area reserved for informational text. When an option is selected in the left frame, it is highlighted in white. Often informational text will accompany it. **Note**: The AMI BIOS has default informational messages built in. The manufacturer retains the option to include, omit, or change any of these informational messages. The AMI BIOS Setup utility uses a key-based navigation system called "hot keys." Most of the AMI BIOS setup utility "hot keys" can be used at any time during setup navigation. These keys include <F3>, <F4>, <Enter>, <ESC>, arrow keys, etc. Note 1: Options printed in Bold are default settings. **Note 2**: <F3> is used to load optimal default settings. <F4> is used to save the settings and exit the setup utility. # **How To Change the Configuration Data** The configuration data that determines the system parameters may be changed by entering the AMI BIOS Setup utility. This Setup utility can be accessed by pressing <Delete> at the appropriate time during system boot. Note: For AMI UEFI BIOS Recovery, please refer to the UEFI BIOS Recovery User Guide posted @http://www.supermicro.com/support/manuals/. # Starting the Setup Utility Normally, the only visible Power-On Self-Test (POST) routine is the memory test. As the memory is being tested, press the <Delete> key to enter the main menu of the AMI BIOS Setup utility. From the main menu, you can access the other setup screens. An AMI BIOS identification string is displayed at the left bottom corner of the screen below the copyright message. **Warning!** Do not upgrade the BIOS unless your system has a BIOS-related issue. Flashing the wrong BIOS can cause irreparable damage to the system. In no event shall the manufacturer be liable for direct, indirect, special, incidental, or consequential damage arising from a BIOS update. If you have to update the BIOS, do not shut down or reset the system while the BIOS is being updated to avoid possible boot failure. # 7-2 Main Setup When you first enter the AMI BIOS Setup utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab on the top of the screen. The Main BIOS Setup screen is shown below. ## System Date/System Time Use this option to change the system time and date. Highlight *System Time* or *System Date* using the arrow keys. Enter new values through the keyboard and press <Enter>. Press the <Tab> key to move between fields. The date must be entered in Day MM/DD/YY format. The time is entered in HH:MM:SS format. (Note: The time is in the 24-hour format. For example, 5:30 P.M. appears as 17:30:00.). #### Supermicro X9DRW-7/iTPF #### Version This item displays the SMC version of the BIOS ROM used in this system. #### **Build Date** This item displays the date that the BIOS Setup utility was built. ## **Memory Information** #### **Total Memory** This displays the amount of memory that is available in the system. # 7-3 Advanced Setup Configurations Select the Advanced tab to access the following submenu items. ## **▶**Boot Feature #### **Quiet Boot** This feature allows the user to select bootup screen display between POST messages and the OEM logo. Select Disabled to display the POST messages. Select Enabled to display the OEM logo instead of the normal POST messages. The options are **Enabled** and Disabled. #### AddOn ROM Display Mode Use this item to set the display mode for the Option ROM. Select Keep Current to use the current AddOn ROM Display setting. Select Force BIOS to use the Option ROM display mode set by the system BIOS. The options are Keep Current and Force BIOS #### **Bootup Num-Lock** Use this feature to set the Power-on state for the Numlock key. The options are Off and **On** #### Wait For 'F1' If Error Select Enabled to force the system to wait until the 'F1' key is pressed if an error occurs. The options are Disabled and **Enabled**. #### Interrupt 19 Capture Interrupt 19 is the software interrupt that handles the boot disk function. When this item is set to Enabled, the ROM BIOS of the host adaptors will "capture" Interrupt 19 at bootup and allow the drives that are attached to these host adaptors to function as bootable disks. If this item is set to Disabled, the ROM BIOS of the host adaptors will not capture Interrupt 19, and the drives attached to these adaptors will not function as bootable devices. The options are **Enabled** and Disabled. #### Re-try Boot When set to Enabled, the BIOS will continuously retry to boot from the selected boot type. The options are **Disabled**, Legacy Boot, and EFI Boot. # **Power Configuration** #### Watch Dog Function If enabled, the Watch Dog timer will allow the system to automatically reboot when a non-recoverable error occurs that lasts for more than five minutes. The options are Enabled and **Disabled**. #### **Power Button Function** If this feature is set to Instant Off, the system will power off immediately as soon as the user presses the power button. If this feature is set to 4 Seconds Override, the system will power off when the user presses the power button for 4 seconds or longer. The options are **Instant Off** and 4 Seconds Override. #### Restore on AC Power Loss Use this feature to set the power state after a power outage. Select Stay Off for the system power to remain off after a power loss. Select Power On for the system power to be turned on after a power loss. Select Last State to allow the system to resume its last state before a power loss. The options are Stay Off, Power On, and Last State # **▶**CPU Configuration This submenu displays the information of the CPU as detected by the BIOS. It also allows the user to configure CPU settings. # ▶ Socket 1 CPU Information, Socket 2 CPU Information This
submenu displays the following information regarding the CPUs installed in Socket 1 and Socket 2. Type of CPU - CPU Signature - Microcode Patch - CPU Stepping - Maximum / Minimum CPU Speed - Processor Cores - Intel HT (Hyper-Threading) Technology - Intel VT-x Technology - Intel SMX Technology - I 1 Data Cache / I 1 Code Cache - L2 Cache - L3 Cache ## **CPU Speed** This item displays the speed of the CPU installed in Socket 1/Socket 2. #### 64-bit This item indicates if the CPU installed in Socket 1 or Socket 2 supports 64-bit technology. ### **Clock Spread Spectrum** Select Enable to enable Clock Spectrum support, which will allow the BIOS to monitor and attempt to reduce the level of Electromagnetic Interference caused by the components whenever needed. The options are **Disabled** and Enabled. #### RTID (Record Types IDs) This feature displays the total number of Record Type IDs for local and remote pools. The options are **Optimal** and Alternate. #### Hyper-threading Select Enabled to support Intel Hyper-threading Technology to enhance CPU performance. The options are **Enabled** and Disabled. #### **Active Processor Cores** Set to Enabled to use a processor's second core and above. (Please refer to Intel's website for more information.) The options are **All**, 1, 2, 4, and 6. #### **Limit CPUID Maximum** This feature allows the user to set the maximum CPU ID value. Enable this function to boot the legacy operating systems that cannot support processors with extended CPUID functions. The options are Enabled and **Disabled** (for the Windows OS). #### Execute-Disable Bit (Available if supported by the OS & the CPU) Select Enabled to enable the Execute Disable Bit which will allow the processor to designate areas in the system memory where an application code can execute and where it cannot, thus preventing a worm or a virus from flooding illegal codes to overwhelm the processor or damage the system during an attack. The default is **Enabled**. (Refer to Intel and Microsoft Web sites for more information.) #### Intel® AES-NI Select Enable to use the Intel Advanced Encryption Standard (AES) New Instructions (NI) to ensure data security. The options are **Enabled** and Disabled. #### MLC Streamer Prefetcher (Available when supported by the CPU) If set to Enabled, the MLC (mid-level cache) streamer prefetcher will prefetch streams of data and instructions from the main memory to the L2 cache to improve CPU performance. The options are Disabled and **Enabled**. #### MLC Spatial Prefetch (Available when supported by the CPU) If this feature is set to Disabled, The CPU prefetches the cache line for 64 bytes. If this feature is set to Enabled the CPU fetches both cache lines for 128 bytes as comprised. The options are Disabled and **Enabled**. #### DCU Streamer Prefetcher (Available when supported by the CPU) Select Enabled to support Data Cache Unit (DCU) prefetch of L1 data to speed up data accessing and processing in the DCU to enhance CPU performance. The options are Disabled and **Enabled**. #### **DCU IP Prefetcher** Select Enabled for DCU (Data Cache Unit) IP Prefetcher support, which will prefetch IP addresses to improve network connectivity and system performance. The options are **Enabled** and Disabled. #### Intel® Virtualization Technology (Available when supported by the CPU) Select Enabled to support Intel Virtualization Technology, which will allow one platform to run multiple operating systems and applications in independent partitions, creating multiple "virtual" systems in one physical computer. The options are **Enabled** and Disabled. Note: If there is any change to this setting, you will need to power off and restart the system for the change to take effect. Please refer to Intel's website for detailed information.) # ► CPU Power Management Configuration This submenu allows the user to configure the following CPU Power Management settings. #### **Power Technology** Select Energy Efficiency to support power-saving mode. Select Custom to customize system power settings. Select Disabled to disable power-saving settings. The options are Disabled, **Energy Efficient**, and Custom. If the option is set to Custom, the following items will display: #### EIST (Available when Power Technology is set to Custom) EIST (Enhanced Intel SpeedStep Technology) allows the system to automatically adjust processor voltage and core frequency to reduce power consumption and heat dissipation. The options are Disabled, and **Enabled**. # Turbo Mode (Available when Power Technology is set to Custom and EIST is enabled) Select Enabled to use the Turbo Mode to boost system performance. The options are **Enabled** and Disabled. #### C1E Support (Available when Power Technology is set to Custom) Select Enabled to enable Enhanced C1 Power State to boost system performance. The options are **Enabled** and Disabled. #### CPU C3 Report (Available when Power Technology is set to Custom) Select Enabled to allow the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off. The options are Enabled and **Disabled.** #### CPU C6 Report (Available when Power Technology is set to Custom) Select Enabled to allow the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off. The options are **Enabled** and Disabled. #### CPU C7 Report (Available when Power Technology is set to Custom) Select Enabled to allow the BIOS to report the CPU C7 State (ACPI C3) to the operating system. CPU C7 State is a processor-specific low C-State. The options are **Enabled** and Disabled. # Package C-State limit (Available when Power Technology is set to Custom) This feature allows the user to set the limit on the C-State package register. The options are C0, C2, **C6**, and No Limit. #### **Energy/Performance Bias** Use this feature to select an appropriate fan setting to achieve maximum system performance (with maximum cooling) or maximum energy efficiency with maximum power saving). The fan speeds are controlled by the firmware management via IPMI 2.0. The options are Performance, **Balanced Performance**, Balanced Energy, and Energy Efficient. #### **Factory Long Duration Power Limit** This item displays the power limit (in watts) set by the manufacturer during which long duration power is maintained. #### Long Duration Power Limit This item displays the power limit (in watts) set by the user during which long duration power is maintained. The default setting is 0. #### **Factory Long Duration Maintained** This item displays the period of time (in seconds) set by the manufacturer during which long duration power is maintained. #### Long Duration Maintained This item displays the period of time (in seconds) during which long duration power is maintained. The default setting is 0. #### **Recommended Short Duration Power Limit** This item displays the short duration power settings (in watts) recommended by the manufacturer. #### **Short Duration Power Limit** During Turbo Mode, the system may exceed the processors default power setting and exceed the Short Duration Power limit. By increasing this value, the processor can provide better performance for short duration. This item displays the time period during which short duration power is maintained. The default setting is 0. # **▶**Chipset Configuration # ► North Bridge This feature allows the user to configure the settings for the Intel North Bridge. # ▶Integrated IO Configuration #### Intel® VT-d Select Enabled to enable Intel Virtualization Technology support for Direct I/O VT-d by reporting the I/O device assignments to the VMM (Virtual Machine Monitor) through the DMAR ACPI Tables. This feature offers fully-protected I/O resource sharing across Intel platforms, providing greater reliability, security and availability in networking and data-sharing. The options are **Enabled** and Disabled. #### Intel® I/OAT Select Enabled to enable Intel I/OAT (I/O Acceleration Technology), which significantly reduces CPU overhead by leveraging CPU architectural improvements and freeing the system resource for other tasks. The default setting is **Enabled**. #### **DCA Support** When set to Enabled, this feature uses Intel's DCA (Direct Cache Access) Technology to improve data transfer efficiency. The options are **Enabled** and Disabled. #### Riser Card on SXB1, SXB2 When detected by the BIOS, these items display riser card information #### IIO 1 PCIe Port Bifurcation Control This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 1 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root Ports. #### **IOU1-PCIe Port** This feature allows the user to set the bus speed between the IOU1 and the PCI-Exp port. The options are x4x4 and x8. #### **IOU2-PCIe Port** This feature allows the user to set the bus speed between the IOU2 and the PCI-Exp port. The options are x4x4x4x4, x4x4x8, x8x4x4, **x8x8**, and x16. #### Port 2A Link Speed Enable the desired type of PCI-Exp Generation support for this slot. The options are GEN1, GEN2, and **GEN3**. #### Port 2C Link Speed Enable the desired type of PCI-Exp Generation support for this slot. The options are GEN1, GEN2, and **GEN3**. #### **IOU3-PCIe Port** This feature allows the user to set the bus speed between the IOU2 and the PCI-Exp port. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16 and **Auto**. #### **IIO 2 PCIe Port Bifurcation Control** This submenu configures the following IO PCIe Port Bifurcation Control settings for IIO 2 PCIe ports to determine how the available PCI-Express lanes to be distributed between the PCI-Exp. Root Ports. #### IOU1-PCIe Port This feature allows the user to set the bus speed between the IOU1 and the PCI-Exp port. The options are x4x4 and x8. #### Port 1A Link Speed Enable the desired type of PCI-Exp Generation
support for this slot. The options are GEN1. GEN2, and **GEN3**. #### **IOU2-PCIe Port** This feature allows the user to set the bus speed between the IOU2 and the PCI-Exp port. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16 and **Auto**. #### **IOU3-PCIe Port** This feature allows the user to set the bus speed between the IOU2 and the PCI-Exp port. The options are x4x4x4x4, x4x4x8, x8x4x4, x8x8, x16 and **Auto**. # **▶QPI** Configuration #### **Current QPI Link** This item displays the current status of the QPI Link. ## **Current QPI Frequency** This item displays the frequency of the QPI Link. #### Isoc Select Enabled to enable Isochronous support to meet QoS (Quality of Service) requirements. This feature is especially important for virtualization technology. The options are Enabled and **Disabled**. ### QPI (Quick Path Interconnect) Link Speed Mode Use this feature to select data transfer speed for QPI Link connections. The options are Slow and Fast. #### **QPI Link Frequency Select** Use this feature to select the desired QPI frequency. The options are **Auto**, 6.4 GT/s, 7.2 GT/s, and 8.0 GT/s. # **▶**DIMM Configuration This section displays the following DIMM information. #### **Current Memory Mode** This item displays the current memory mode. #### **Current Memory Speed** This item displays the current memory speed. #### Mirroring This item displays if memory mirroring is supported by the motherboard. Memory mirroring creates a duplicate copy of the data stored in the memory to enhance data security. #### Sparing This item displays if memory sparing is supported by the motherboard. Memory sparing enhances system reliability, availability, and serviceability. #### **▶**DIMM Information #### CPU Socket 1 DIMM Information, CPU Socket 2 DIMM Information The status of the memory modules is displayed as detected by the BIOS. #### **Memory Mode** When Independent is selected, all DIMMs are available to the operating system. When Mirroring is selected, the motherboard maintains two identical copies of all data in memory for data backup. When Lock Step is selected, the motherboard uses two areas of memory to run the same set of operations in parallel. The default setting is **Independent**. #### **DRAM RAPL Mode** RAPL (Running Average Power Limit) provides mechanisms to enforce power consumption limits on supported processors The options are Disabled, DRAM RAPL MODE1, and **DRAM RAPL MODE1**. #### Memory Energy/Performance Use this feature to select a memory setting that maximizes either memory performance or memory energy saving. The options are Performance and **Energy Saving**. #### **DDR Speed** Use this feature to force a DDR3 memory module to run at a frequency other than what is specified in the specification. The options are Force DDR3-800, Force DDR3-1066. Force DDR3-1333. Force DDR3-1600 and Force SPD, and **Auto**. #### Channel Interleaving This feature selects from the different channel interleaving methods. The options are **Auto**, 1 Way, 2 Way, 3, Way, and 4 Way. #### Rank Interleaving This feature allows the user to select a rank memory interleaving method. The options are **Auto**, 1 Way, 2 Way, 4, Way, and 8 Way. #### **Patrol Scrub** Patrol Scrubbing is a process that allows the CPU to correct correctable memory errors detected on a memory module and send the correction to the requestor (the original source). When this item is set to Enabled, the IO hub will read and write back one cache line every 16K cycles, if there is no delay caused by internal processing. By using this method, roughly 64 GB of memory behind the IO hub will be scrubbed every day. The options are **Enabled** and Disabled. #### **Demand Scrub** Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enabled to use Demand Scrubbing for ECC memory correction. The options are Enabled and **Disabled**. #### **Data Scrambling** Select Enabled to enable data scrambling to ensure data security and integrity. The options are Disabled and **Enabled**. #### **Device Tagging** Select Enabled to support device tagging. The options are **Disabled** and Enabled #### **Thermal Throttling** Throttling improves reliability and reduces power consumption in the processor via automatic voltage control during processor idle states. The options are Disabled and **CLTT** (Closed Loop Thermal Throttling). # **▶** South Bridge Configuration This feature allows the user to configure the settings for the Intel PCH chip. #### **PCH Information** This feature displays the following PCH information. Name: This item displays the name of the PCH chip. Stepping: This item displays the status of the PCH stepping. **USB Devices**: This item displays the USB devices detected by the BIOS. ## **All USB Devices** This feature enables all USB ports/devices. The options are Disabled and **Enabled**. (If set to Enabled, EHCl Controller 1 and Controller 2 will appear.) # EHCI Controller 1/EHCI Controller 2 (Available when All USB Devices is set to Enabled) Select Enabled to enable EHCI (Enhanced Host Controller Interface) Controller 1 or Controller 2. The options are Disabled and **Enabled**. #### Legacy USB Support (Available when USB Functions is not Disabled) Select Enabled to support legacy USB devices. Select Auto to disable legacy support if USB devices are not present. Select Disabled to have USB devices available for EFI (Extensive Firmware Interface) applications only. The settings are **Enabled** Disabled, and Auto. #### Port 60/64 Emulation Select Enabled to enable I/O port 60h/64h emulation support for the legacy USB keyboard so that it can be fully supported by the operating systems that does not recognize a USB device. The options are Disabled and **Enabled**. #### **EHCI Hand-Off** This item is for operating systems that do not support Enhanced Host Controller Interface (EHCI) hand-off. When enabled, EHCI ownership change will be claimed by the EHCI driver. The options are **Disabled** and Enabled. # **▶**SATA Configuration When this submenu is selected, the AMI BIOS automatically detects the presence of IDE or SATA devices and displays the following items. **SATA Port0~SATA Port5**: The AMI BIOS displays the status of each SATA port as detected by the BIOS. #### **SATA Mode** Use this feature to configure SATA mode for a selected SATA port. The options are Disabled, IDE Mode, **AHCI Mode** and RAID Mode. The following are displayed depending on your selection: #### **IDE Mode** The following items are displayed when IDE Mode is selected: #### Serial-ATA (SATA) Controller 0~1 Use this feature to activate or deactivate the SATA controller, and set the compatibility mode. The options for SATA Controller 0 are Disabled, Enhanced, and **Compatible**. The options for SATA Controller 1 are Disabled and **Enhanced** #### **AHCI Mode** The following items are displayed when the AHCI Mode is selected. #### **Aggressive Link Power Management** When Enabled, the SATA AHCI controller manages the power usage of the SATA link. The controller will put the link in a low power mode during extended periods of I/O inactivity, and will return the link to an active state when I/O activity resumes. The options are **Enabled** and Disabled. #### Port 0~5 Hot Plug Select Enabled to enable hot-plug support for a particular port, which will allow the user to change a hardware component or device without shutting down the system. The options are **Enabled** and Disabled. #### Port 0~5 Staggered Spin Up Select Enabled to enable Staggered Spin-up support to prevent excessive power consumption caused by multiple HDDs spinning-up simultaneously. The options are Enabled and **Disabled**. #### **RAID Mode** The following items are displayed when RAID Mode is selected: #### Onboard SATA RAID Oprom/Driver Use this feature to enable the onboard SATA Option ROM or EFI Driver. The options are **Enabled** and Disabled. #### Port 0~5 Hot Plug Select Enabled to enable hot-plug support for the particular port. The options are **Enabled** and Disabled. # ►SCU (Storage Control Unit) Configuration #### Storage Controller Unit Select Enabled to enable PCH SCU storage devices. The options are Disabled and Enabled ## SCU RAID Option ROM Select Enabled to support the onboard SCU Option ROM to boot up the system via a storage device. The options are Disabled and **Enabled**. **SCU Port 0~SCU Port 3**: The AMI BIOS will automatically detect the onboard SCU devices and display the status of each SCU device as detected. # ▶PCIe/PCI/PnP Configuration #### Launch Storage OpROM Policy Use this feature to select the Option ROM to boot the system when there are multiple Option ROMs available in the system. The options are UEFI only and **Legacy only**. ## **PCI Latency Timer** Use this feature to set the latency Timer of each PCI device installed on a PCI bus. Select 64 to set the PCI latency to 64 PCI clock cycles. The options are 32, **64**, 96, 128, 160, 192, 224 and 248. #### **PERR#** Generation Select Enabled to allow a PCI device to generate a PERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**. #### **SERR#** Generation Select Enabled to allow a PCI device to generate an SERR number for a PCI Bus Signal Error Event. The options are Enabled and **Disabled**. #### **Maximum Payload** Select Auto to allow the system BIOS to automatically set the maximum payload value for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes and 256 Bytes. #### Maximum Read Request Select Auto to allow the system BIOS to automatically set the maximum Read Request size for a PCI-E device to enhance system performance. The options are **Auto**, 128 Bytes, 256 Bytes, 512 Bytes,
1024 Bytes, 2048 Bytes, and 4096 Bytes. #### **ASPM Support** This feature allows the user to set the Active State Power Management (ASPM) level for a PCI-E device. Select Force L0s to force all PCI-E links to operate at L0s state. Select Auto to allow the system BIOS to automatically set the ASPM level for the system. Select Disabled to disable ASPM support. The options are **Disabled**, Force L0s, and Auto. Warning: Enabling ASPM support may cause some PCI-E devices to fail! #### Above 4G Decoding (Available if the system supports 64-bit PCI decoding) Select Enabled to decode a PCI device that supports 64-bit in the space above 4G Address. The options are Enabled and **Disabled**. #### **BCM57810S 10G OPROM** Select Enabled to boot the computer using the BCM57810S Ethernet device. The options are **Enabled** and Disabled. #### Onboard LAN Option ROM Select Select iSCSI to use the iSCSI Option ROM to boot the computer using a network device. Select PXE (Preboot Execution Environment) to use an PXE Option ROM to boot the computer using a network device. The options are **PXE** and iSCSI. #### Load Onboard LAN1 Option ROM, Load Onboard LAN2 Option ROM Select Enabled to enable the onboard LAN1/LAN2 Option ROM. This is to boot the computer using a network device. The default setting for LAN1 Option ROM is **Enabled**, and the default setting for LAN2 Option ROM is **Disabled**. #### Load Onboard SAS Option ROM Select Enabled to use the onboard SAS Option ROM to boot the computer using a SAS device. The options are **Enabled** and Disabled. #### **VGA Priority** This feature allows the user to select the graphics adapter to be used as the primary boot device. The options are **Onboard**, and Offboard. #### **Network Stack** Select Enabled enable PXE (Preboot Execution Environment) or UEFI (Unified Extensible Firmware Interface) for network stack support. The options are Enabled and **Disabled**. #### IPv4 PXE Support (Available when Network Stack is set to Enabled) Set this item to Enabled to activate IPv4 PXE Support. The options are **Enabled** and Disabled. #### IPv6 PXE Support (Available when Network Stack is set to Enabled) Set this item to Enabled to activate IPv6 PXE Support. The options are Enabled and Disabled # ► Super IO Configuration Super IO Chip: This item displays the Super IO chip used in the motherboard. # ▶ Serial Port 1 Configuration #### Serial Port Select Enabled to enable serial port 1. The options are Enabled and Disabled. # **Device Settings** This item displays the settings of Serial Port 1. #### **Change Settings** This option specifies the base I/O port address and the Interrupt Request address of Serial Port 1. Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4, IO=3F8h; IRQ=3, IO=2F8h; IRQ=3, IO=3E8h; IRQ=5, IO=2E8h; IRQ=7, IO=3F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; #### **Device Mode** Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed. # ► Serial Port 2 Configuration #### **SOL Serial Port** Select Enabled to enable serial port 2. The options are **Enabled** and Disabled. #### **Device Settings** This item displays the settings of Serial Port 2. #### **SOL Change Settings** This option specifies the base I/O port address and the Interrupt Request address of Serial Port 2. Select Disabled to prevent the serial port from accessing any system resources. When this option is set to Disabled, the serial port becomes unavailable. The options are **Auto**, IO=3F8h; IRQ=4, IO=3F8h; IRQ=3, IO=2F8h; IRQ=3, IO=3E8h; IRQ=5, IO=2E8h; IRQ=7, IO=3F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2F8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=2E8h; IRQ=3, 4, 5, 6, 7, 10, 11, 12; IO=3E8h; #### **SOL Device Mode** Use this feature to select the desired mode for a serial port specified. The options are **Normal** and High Speed. #### Serial Port 2 Attribute Use this feature to select the attribute for this serial port. The options are **SOL** (Serial Over LAN), and COM. #### ► Serial Port Console Redirection #### COM1, COM2 These two submenus allow the user to configure the following Console Redirection settings for a COM Port specified by the user. #### **Console Redirection** Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and Disabled. The default setting for COM1 is **Disabled**, and for COM2 is **Enabled**. # **▶** Console Redirection Settings This feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user. ## **Terminal Type** This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII Character set. Select VT100+ to add color and function key support. Select ANSI to use the Extended ASCII Character Set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are VT100, VT100+, VT-UTF8, and ANSI. #### Bits Per second Use this feature to set the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 38400, 57600 and **115200** (bits per second). #### **Data Bits** Use this feature to set the data transmission size for Console Redirection. The options are 7 Bits and 8 Bits. #### Parity A parity bit can be sent along with regular data bits to detect data transmission errors. Select Even if the parity bit is set to 0, and the number of 1's in data bits is even. Select Odd if the parity bit is set to 0, and the number of 1's in data bits is odd. Select None if you do not want to send a parity bit with your data bits in transmission. Select Mark to add a mark as a parity bit to be sent along with the data bits. Select Space to add a Space as a parity bit to be sent with your data bits. The options are **None**, Even, Odd, Mark and Space. #### Stop Bits A stop bit indicates the end of a serial data packet. Select 1 Stop Bit for standard serial data communication. Select 2 Stop Bits if slower devices are used. The options are **1** and 2. #### Flow Control This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None** and Hardware RTS/CTS. ## **VT-UTF8 Combo Key Support** Select Enabled to enable VT-UTF8 Combination Key support for ANSI/VT100 terminals. The options are **Enabled** and Disabled. #### Recorder Mode Select Enabled to capture the data displayed on a terminal and send it as text messages to a remote server. The options are **Disabled** and Enabled. #### Resolution 100x31 Select Enabled for extended-terminal resolution support. The options are Disabled and **Enabled**. # Legacy OS Redirection Resolution Use this feature to select the number of rows and columns used in Console Redirection for legacy OS support. The options are 80x24 and 80x25. #### **Putty KeyPad** This feature selects Function Keys and KeyPad settings for Putty, which is a terminal emulator designed for the Windows OS. The options are **VT100**, LINUX, XTERMR6, SCO, ESCN, and VT400. #### **Redirection After BIOS Post** Use this feature to enable or disable legacy console redirection after BIOS POST. When set to Bootloader, legacy console redirection is disabled before booting the OS. When set to Always Enable, legacy console redirection remains enabled when booting the OS. The options are **Always Enable** and Bootloader. # Serial Port for Out-of-Band Management/Windows Emergency Management Services (EMS) The submenu allows the user to configure Console Redirection settings to support Out-of-Band Serial Port management. # Console Redirection (for EMS) Select Enabled to use a COM Port selected by the user for Console Redirection. The options are Enabled and **Disabled**. # ▶ Console Redirection Settings (for EMS) This
feature allows the user to specify how the host computer will exchange data with the client computer, which is the remote computer used by the user. #### **Out-of-Band Management Port** The feature selects a serial port used by the Microsoft Windows Emergency Management Services (EMS) to communicate with a remote server. The options are **COM1** and COM2 #### **Terminal Type** This feature allows the user to select the target terminal emulation type for Console Redirection. Select VT100 to use the ASCII character set. Select VT100+ to add color and function key support. Select ANSI to use the extended ASCII character set. Select VT-UTF8 to use UTF8 encoding to map Unicode characters into one or more bytes. The options are ANSI, VT100, VT100+, and VT-UTF8. #### Bits Per Second This item sets the transmission speed for a serial port used in Console Redirection. Make sure that the same speed is used in the host computer and the client computer. A lower transmission speed may be required for long and busy lines. The options are 9600, 19200, 57600, and **115200** (bits per second). #### Flow Control This feature allows the user to set the flow control for Console Redirection to prevent data loss caused by buffer overflow. Send a "Stop" signal to stop sending data when the receiving buffer is full. Send a "Start" signal to start sending data when the receiving buffer is empty. The options are **None**, Hardware RTS/CTS, and Software Xon/Xoff. #### Data Bits, Parity, Stop Bits The status of these features is displayed. # ► ACPI Settings Use this feature to configure Advanced Configuration and Power Interface (ACPI) power management settings for your system. #### **ACPI Sleep State** Use this feature to select the ACPI State when the system is in sleep mode. Select S1 (CPU_Stop_Clock) to erase all CPU caches and stop executing instructions. Power to the CPU(s) and RAM is maintained, but RAM is refreshed. Select Suspend Disabled to use power-reduced mode. Power will only be supplied to limited components (such as RAMs) to maintain the most critical functions of the system. The options are Suspend Disabled and S1 (CPU Stop Clock). #### **NUMA (NON-Uniform Memory Access)** This feature enables the Non-Uniform Memory Access ACPI support. The options are **Enabled** and Disabled. #### **High Precision Event Timer** Select Enabled to activate the High Precision Event Timer (HPET) that produces periodic interrupts at a much higher frequency than a Real-time Clock (RTC) does in synchronizing multimedia streams, providing smooth playback, reducing the dependency on other timestamp calculation devices, such as an x86 RDTSC Instruction embedded in the CPU. The High Performance Event Timer is used to replace the 8254 Programmable Interval Timer. The options are **Enabled** and Disabled. # ► Trusted Computing (Available when a TPM device is detected by the BIOS) #### Configuration #### **TPM Support** Select Enabled on this item and enable the TPM jumper on the motherboard to enable TPM support to improve data integrity and network security. The options are **Enabled** and Disabled. #### **TPM State** Select Enabled to enable TPM security settings to improve data integrity and network security. The options are Disabled and **Enabled**. #### **Pending Operation** Use this item to schedule an operation for the security device. The options are **None**, Enable Take Ownership, Disable Take Ownership, and TPM Clear. **Note:** During restart, the computer will reboot in order to execute the pending operation and change the state of the security device. Current Status Information: This item displays the information regarding the current TPM status. #### **TPM Enable Status** This item displays the status of TPM Support to indicate if TPM is currently enabled or disabled. #### **TPM Active Status** This item displays the status of TPM Support to indicate if TPM is currently active or deactivated. #### **TPM Owner Status** This item displays the status of TPM Ownership. # ▶Intel TXT (LT-SX) Configuration #### Intel TXT (LT-SX) Hardware Support This feature indicates if the following hardware components support the Intel Trusted Execution Technology. CPU: TXT (Trusted Execution Technology) Feature Chipset: TXT (Trusted Execution Technology) Feature #### Intel TXT (LT-SX) Configuration This feature displays the following TXT configuration setting. **TXT (LT-SX) Support:** This item indicates if the Intel TXT support is enabled or disabled. The default setting is **Disabled**. **Note**: Be sure to format your TPM module before enabling TXT (LT-SX) support for this feature to work properly. # Intel TXT (LT-SX) Dependencies Be sure to enable the features displayed below for Trusted Execution Technology to work properly in the system. VT-d Support: Intel Virtualization Technology with Direct I/O support VT Support: Intel Virtualization Technology support TPM Support: Trusted Platform support TPM State: Trusted Platform state # **▶**ME Subsystem This feature displays the following ME Subsystem Configuration settings. ME BIOS Interface Version ME Version # **▶**iSCSI Configuration This item displays iSCSI configuration information: #### **iSCSI Initiator Name** This item displays the name of the iSCSI Initiator, which is a unique name used in the world. The name must use IQN format. The following actions can also be performed: - Add an Attempt - Delete Attempts - · Commit/Discard Changes and Exit - Change Attempt Order - Commit/Discard Changes and Exit # ►Intel® Ethernet Controller i350 Gigabit Network Connection These items display the following information on the Intel i350 Gigabit network connections # **▶**NIC Configuration #### Link Speed Use this feature to change the link speed and duplex for the current port. The options are **AutoNeg**, 10Mbps Half, 10Mbps Full, 100Mbps Half, and 100Mbps full. #### Wake on LAN Select enabled to wake the system with a magic packet. The options are **Enabled** and Disabled. #### Blink LEDs This feature allows the user to specify the duration for LEDs to blink. The range is from $0 \sim 15$ seconds. The default setting is $\mathbf{0}$. #### PORT CONFIGURATION INFORMATION This section displays the following port information: - UEFI Driver - Adapter PBA - Chip Type - PCI Device ID - PCI Bus:Device:Function - Link Status - Factory MAC Address / Alternate MAC Address # 7-4 Event Logs Select the Event Logs tab to access the following submenu items. # ► Change SMBIOS Event Log Settings This feature allows the user to configure SMBIOS Event settings. #### **Enabling/Disabling Options** ## **SMBIOS Event Log** Select Enabled to enable SMBIOS (System Management BIOS) Event Logging during system boot. The options are **Enabled** and Disabled. #### **Runtime Error Logging Support** Select Enabled to support Runtime Error Logging. The options are **Enabled** and Disabled. #### **Memory Correctable Error Threshold** This feature allows the user to enter the threshold value for correctable memory errors. The default setting is 10. ## **PCI Error Logging Support** Select Enabled to support error event logging for PCI slots. The options are Enabled and **Disabled**. #### **Erasing Settings** #### **Erase Event Log** Select Enabled to erase the SMBIOS (System Management BIOS) Event Log, which is completed before a event logging is initialized upon system reboot. The options are **No**, Yes, Next reset, and Yes, Every reset. ## When Log is Full Select Erase Immediately to immediately erase SMBIOS error event logs that exceed the limit when the SMBIOS event log is full. Select Do Nothing for the system to do nothing when the SMBIOS event log is full. The options are **Do Nothing** and Erase Immediately. ## **SMBIOS Event Log Standard Settings** #### Log System Boot Event Select Enabled to log system boot events. The options are **Disabled** and Enabled. #### **MECI (Multiple Event Count Increment)** Enter the increment value for the multiple event counter. Enter a number from 1 to 255. The default setting is **1**. # **METW (Multiple Event Count Time Window)** This item allows the user to decide how long (in minutes) should the multiple event counter wait before generating a new event log. Enter a number from 0 to 99. The default setting is **60**. # **View SMBIOS Event Log** This item allows the user to view the event in the SMBIOS event log. Select this item and press <Enter> to view the status of an event in the log. ## 7-5 **IPMI** Select the IPMI (Intelligent Platform Management Interface) tab to access the following submenu items. #### **IPMI Firmware Revision** This item indicates the IPMI firmware revision used in your system. # **IPMI Status** This item indicates the status of the IPMI firmware installed in your system. # ▶System Event Log ## **Enabling/Disabling Options** ### **SEL Components** Select Enabled for all system event logging at bootup. The options are **Enabled** and Disabled. #### **Erasing Settings** #### **Erase SEL** Select Yes, On next reset to erase all system event logs upon next system reboot. Select Yes, On every reset to erase all system event logs upon each system reboot. Select No to keep all system event logs after each system reboot. The options are **No**, Yes, On next reset, and Yes, On every reset. #### When SEL is Full This feature allows the user to decide what the BIOS should do when the system event log is full. Select Erase Immediately to erase all events in the log when the system event log is full. The options are **Do Nothing** and Erase Immediately. #### **Custom EFI Logging Options** #### Log EFI Status Codes Select Enabled to log EFI (Extensible Firmware Interface) Status Codes, Error Codes or Progress Codes. The options are Enabled and **Disabled**. Note: After making changes on a setting, be sure to reboot the system for the changes to take effect. # **▶BMC Network Configuration** LAN Channel 1: This feature allows the user to configure the settings for LAN1 Port. ####
Update IPMI LAN Configuration This feature allows the BIOS to implement any IP/MAC address changes at the next system boot. If the option is set to Yes, any changes made to the settings below will take effect when the system is rebooted. The options are **No** and Yes. #### **Configuration Address Source** This feature allows the user to select the source of the IP address for this computer. If Static is selected, you will need to know the IP address of this computer and enter it to the system manually in the field. If DHCP is selected, the BIOS will search for a DHCP (Dynamic Host Configuration Protocol) server in the network that is attached to and request the next available IP address for this computer. The options are **DHCP** and Static. The following items are assigned IP addresses automatically if DHCP is selected, or can be configured manually if Static is selected. #### Station IP Address This item displays the Station IP address for this computer. This should be in decimal and in dotted quad form (i.e., 192.168.10.253). #### Subnet Mask This item displays the sub-network that this computer belongs to. The value of each three-digit number separated by dots should not exceed 255. #### Station MAC Address This item displays the Station MAC address for this computer. Mac addresses are 6 two-digit hexadecimal numbers. #### **Gateway IP Address** This item displays the Gateway IP address for this computer. This should be in decimal and in dotted guad form (i.e., 192.168.10.253). # **7-6** Boot This submenu allows the user to configure the following boot settings for the system. #### 1st Boot Device, 2nd Boot Device, 3rd Boot Device, etc. Use these items to specify the sequence of boot device priority. # **▶** Delete Boot Option This feature allows the user to select a boot device to delete from the boot priority list #### **Delete Boot Option** Select the desired boot device to delete. # CD/DVD ROM Drive BBS Priorities, Hard Disk BBS Priorities, Network Device BBS Priorities, UEFI Boot Drive BBS Priorities The above options appear when detected by the BIOS. Use these options to set the order of the legacy network, USB, and Hard Disk Drive devices detected. # 7-7 Security This menu allows the user to configure the following security settings for the system. #### **Password Check** Use this feature to determine when a password entry is required. Select Setup to require the password only when entering setup. Select Always to require the password when entering setup and on each boot. The options are **Setup** and Always. # **Administrator Password** Use this feature to set the Administrator Password which is required to enter the BIOS setup utility. The length of the password should be from 3 to 20 characters long. # 7-8 Save & Exit This submenu allows the user to configure the Save and Exit settings for the system. # **Discard Changes and Exit** Select this option to quit the BIOS Setup without making any permanent changes to the system configuration, and reboot the computer. Select Discard Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes. ### Save Changes and Reset When you have completed the system configuration changes, select this option to save the changes and reboot the computer so that the new system configuration settings can take effect. Select Save Changes and Exit, and press <Enter>. When the dialog box appears, asking you if you want to exit the BIOS setup without saving, select **Yes** to quit BIOS without saving the changes, or select No to quit the BIOS and save changes. #### Save Options #### Save Changes Select this option and press <Enter> to save all changes you've done so far and return to the AMI BIOS utility Program. When the dialog box appears, asking you if you want to save configuration, select **Yes** to save the changes, or select No to return to the BIOS without making changes. #### **Discard Changes** Select this feature and press <Enter> to discard all the changes and return to the BIOS setup. When the dialog box appears, asking you if you want to load previous values, select **Yes** to load the values previous saved, or select No to keep the changes you've made so far. #### **Restore Optimized Defaults** Select this feature and press <Enter> to load the optimized default settings that help optimize system performance. When the dialog box appears, asking you if you want to load optimized defaults, select **Yes** to load the optimized default settings, or select No to abandon optimized defaults. #### Save as User Defaults Select this feature and press <Enter> to save the current settings as the user's defaults. When the dialog box appears, asking you if you want to save values as user's defaults, select **Yes** to save the current values as user's default settings, or select No to keep the defaults previously saved as the user's defaults. #### **Restore User Defaults** Select this feature and press <Enter> to load the user's defaults previously saved in the system. When the dialog box appears, asking you if you want to restore user's defaults, select **Yes** to restore the user's defaults previously saved in the system, or select No to abandon the user's defaults that were previously saved. #### **Boot Override** This feature allows the user to override the Boot Option Priorities setting in the Boot menu, and instead boot the system with one of the listed devices. This is a one-time override. # Appendix A # **BIOS Error Beep Codes** During the POST (Power-On Self-Test) routines, which are performed at each system boot, errors may occur. **Non-fatal errors** are those which, in most cases, allow the system to continue to boot. The error messages normally appear on the screen. **Fatal errors** will not allow the system to continue with bootup procedure. If a fatal error occurs, you should consult with your system manufacturer for possible repairs. These fatal errors are usually communicated through a series of audible beeps. The numbers on the fatal error list correspond to the number of beeps for the corresponding error. | BIOS Error Beep Codes | | | |---------------------------------|------------------------------------|---| | Beep Code/LED | Error Message | Description | | 1 beep | Refresh | Circuits have been reset. (Ready to power up) | | 5 short beeps + 1 long beep | Memory error | No memory detected in the system | | 5 long beeps + 2 short
beeps | Display memory read/write error | Video adapter missing or with faulty memory | | 5 beeps | No Con-In or No
Con-Out devices | Con-In: USB or PS/2 key-
board, PCI or Serial Console
Redirection, IPMI KVM or
SOL
Con-Out: Video Controller,
PCI or Serial Console Redi-
rection, IPMI SOL | | 1 beep per device | Refresh | 1 beep for each USB device | | X9 IPMI Error Codes | | | | 1 continuous beep | System overheat | System overheat | # **Notes** # Appendix B # **System Specifications** #### **Processors** Single or dual Intel® E5-2600 Series (Socket R) processors in LGA 2011 sockets Note: Please refer to our web site for a complete listing of supported processors. # Chipset Intel C602 chipset #### **BIOS** 128 Mb AMI® SPI Flash EEPROM # **Memory Capacity** Sixteen DIMM slots that can support up to 512 GB of RDIMM ECC DDR3-1600/1333/1066/800 SDRAM or 128 GB ECC/non-ECC UDIMM memory See the memory section in Chapter 5 for details. #### **SAS** Controller LSI 2208 SAS controller with 1 GB cache for 16-port SAS, which supports RAID 0, 1, 5, 6, 10, 50, 60. # **SATA Controller** Intel on-chip SATA controller for eight-port SATA (two SATA 3.0 ports and eight SATA 2.0 ports), which supports RAID 0, 1, 5 and 10 (RAID 5 supported with Windows OS only) # **Drive Bays** Eight 2.5" hot-swap drive bays to house SAS or SATA drives # **Expansion Slots** Left side: two PCI-E x16 add-on card (w/ RSC-R1UW-2E16 riser) Right side: one PCI-E x8 card (w/ RSC-R1UW-E8R riser) #### Serverboard X9DRW-7TPF (Proprietary form factor) Dimensions: 16.5 x 12.8 in (419 x 325 mm) #### Chassis SC119XTQ-R700WB (1U rackmount) Dimensions: (WxHxD) 17.2 x 1.7 x 26.9 in. (437 x 43 x 683 mm) # Weight Gross Weight: 46 lbs. (20.9 kg.) # **System Cooling** Six 4-cm counter-rotating fans # System Input Requirements AC Input Voltage: 100-240VAC Rated Input Current: 4-10A Rated Input Frequency: 50 to 60 Hz # **Power Supply** Rated Output Power: 700W (Part# PWS-703P-1R) Rated Output Voltages: +12V (58A), +5Vsb (3A) Battery Backup Module (Part # PWS-206B-1R) Battery Capacity: 5 min. (200W), 15 min. (100W), 6 sec. (350W Surge) Battery Output Voltage: 12V and 5Vsb # **Operating Environment** Operating Temperature: 10° to 35° C (50° to 95° F) Non-operating Temperature: -40° to 60° C (-40° to 140° F) Operating Relative Humidity: 8% to 90% (non-condensing) Non-operating Relative Humidity: 5 to 95% (non-condensing) # **Regulatory Compliance** Electromagnetic Emissions: FCC Class A, EN 55022 Class A, EN 61000-3-2/-3-3, CISPR 22 Class A Electromagnetic Immunity: EN 55024/CISPR 24, (EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6, EN 61000-4-8, EN 61000-4-11) Safety: CSA/EN/IEC/UL 60950-1 Compliant, UL or CSA Listed (USA and Canada), CE Marking (Europe) California Best Management Practices Regulations for Perchlorate Materials: This Perchlorate warning applies only to products containing CR (Manganese Dioxide) Lithium coin cells. "Perchlorate Material-special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate" #### (continued from front) The products sold by Supermicro are not intended for and will not be used in life support systems, medical equipment, nuclear facilities or systems,
aircraft, aircraft devices, aircraft/emergency communication devices or other critical systems whose failure to perform be reasonably expected to result in significant injury or loss of life or catastrophic property damage. Accordingly, Supermicro disclaims any and all liability, and should buyer use or sell such products for use in such ultra-hazardous applications, it does so entirely at its own risk. Furthermore, buyer agrees to fully indemnify, defend and hold Supermicro harmless for and against any and all claims, demands, actions, litigation, and proceedings of any kind arising out of or related to such ultra-hazardous use or sale.